Зачем вешают чулки, носки и валенки над камином?

Как вешать чулки на кирпичную накидку?

Кроме того, в какую сторону должны смотреться рождественские чулки?

Красивый женские чулки! Я повешу их левому человеку. Обычно я считаю, что если вы смотрите на них, висящих на камине, они указывают налево, как в этом списке.

Таким образом, почему мы вешаем носки на Рождество? A рождество чулок пустой носок or носок-образная сумка, которую вешают в День Святого Николая или рождество Ева, чтобы Святой Николай (или связанные фигуры Деда Мороза и Отца рождество) может наполнить его маленькими игрушками, конфетами, фруктами, монетами или другими маленькими подарками по прибытии.

Как прикрепить гирлянду к мантии?

  1. Прикрепите несколько прозрачных или белых съемных крючков, равномерно расположенных на каминной полке.
  2. Надежно обвяжите проволоку вокруг гирлянды, чтобы совместить с крючками.
  3. Другой конец проволоки обвяжите вокруг крючков так, чтобы гирлянда свисала перед камином, создавая эффект драпировки.

Куда поставить елку?

Вот лучшие участки фэн-шуй для вашей елки:

  • Восток (здоровье и семья)
  • Юго-восток (деньги и изобилие)
  • Юг (слава и репутация)

Зачем вешаем чулки у камина?

Согласно традиции, подлинный Святой Николай клал золотые монеты в женские чулки трех бедных сестер. Однажды ночью девушки оставили свои женские чулки сушка над камин. Святой Николай знал, что семья была очень бедной, поэтому бросил три мешка золотых монет в воду. дымоход. Деньги попали в сестры. женские чулки.

Что делать, если у вас нет камина?

  1. Установите несколько декоративных журналов. Прежде чем вы сможете развести огонь, вы должны иметь журналы – а журналы могут быть красивыми!
  2. Включите электрический камин. Электрические камины прошли долгий путь.
  3. Обратитесь к Netflix.
  4. Зажгите свечи.

Как повесить рождественский чулок на перила?

Вы можете добиться этого несколькими способами: с помощью самоклеящихся крючков или настенных крючков, которые ввинчиваются в дерево. перила или используя декоративную ленту или завязки для вешать что собой представляет женские чулки. Добавьте гирлянды, украшения и / или гирлянды на перила для немного дополнительного праздничного настроения.

Куда поставить елку?

Вот лучшие участки фэн-шуй для вашей елки:

  • Восток (здоровье и семья)
  • Юго-восток (деньги и изобилие)
  • Юг (слава и репутация)

Куда вы вешаете чулки без камина?

  1. Повесьте новогодние чулки из ветки. Источник: Веселая мысль.
  2. Повесьте их на книжный шкаф.
  3. Повесьте чулки на вешалку.
  4. Поместите их на дерево пальто.
  5. Подвесьте к лестнице.
  6. Повесьте на пианино.
  7. Повесьте на лестничной клетке.
  8. Повесьте в окно.

Как прикрепить каминную полку?

Что вы кладете в рождественский чулок?

ЗАПАСНЫЕ ИДЕИ ДЛЯ ДЕТЕЙ

  • Мелки.
  • Раскраски.
  • Наклейки.
  • Торговые карты.
  • Перчатки.
  • Шапочки.
  • Игры про путешествия.
  • Играя в карты.

Как вешать вещи на кирпич без сверления?

Если ваш раствор утоплен, то есть кирпича слегка выдавите за линию затирки, вы можете использовать кирпич зажимает вешать вещи на стене. Защелкните зажим (иногда называемый «зажимом») прямо на кирпич лицо и все тут; крючок является частью устройства.

Что ты надеваешь на рождественские чулки?

Выбирайте такие предметы, как карандаши, мелки, небольшие наборы акварели или наклейки, чтобы положил в детском чулок. Вы можете найти массу забавных принадлежностей для рукоделия, которые не стоят очень дорого и достаточно малы, чтобы заполнить их любого размера. чулок. Книжки-раскраски, небольшие журналы, марки и забавные ластики можно положить в чулок в том числе.

Продает ли Home Depot зажимы для кирпича?

Кирпичная кладка линия Клипсы (2 шт. В упаковке) -11-793 – Home Depot.

Как украсить Рождество без камина?

  1. Пусть чулки стоят особняком.
  2. Подготовьте любое украшение поверхности.
  3. Зарегистрируйте столбик кровати.
  4. Займите немного места для книжного шкафа.
  5. Сделайте импровизированную мантию.
  6. Двойной декор.
  7. Подсвети это.

Как повесить гирлянду на мантию без гвоздей?

Командные перехватчики. Командные хуки – лучшее, что я нашел для повешение венки гирлянда и чулки на моем мантия, дверь или стена, без гвоздей! Если вы еще не использовали их, это маленькие крючки с не повреждающим клейким двусторонним скотчем на обратной стороне. Я покупаю свой здесь или в хозяйственном магазине, таком как Home Depot.

Используйте хорошую лестницу, когда Установка надежная огней. Закрепите их изолированными держателями (никогда не используйте кнопки или гвозди). Не надо устанавливать надежная огней на деревьях, которые соприкасаются с линиями электропередач. Перед Установка надежная рождественские огни, подключите их, чтобы убедиться, что все ваши лампочки работают.

  1. 11 шагов по украшению настоящей елки и уходу за ней:
  2. Шаг 1: Сначала выберите подставку для дерева.
  3. Шаг 2: Подготовьте ствол и обшивку.
  4. Шаг 3: Распылите средство для защиты растений на ветки.
  5. Шаг 4. Выберите лучшую сторону для демонстрации.
  6. Шаг 5: Повесьте фары.
  7. Шаг 6: Добавьте гирлянду.
  8. Шаг 7: Добавьте веточки, ягоды и / или цветочные композиции.

Как вешать носки на камин?

Найдите прочную тяжелую ветку, которую сможете вешать у стены с большой лентой или на каминной полке. Обвяжите ветку бечевкой, чтобы вешать что собой представляет женские чулки из. Затем поместите его на камин вместе с другим декором, таким как скульптуры, гирлянды, свечи и фонари.

Читайте также:
Как выбрать рыбу для шашлыка: секреты и советы

Как вешать чулки на поручни лестницы?

Висячие чулки по лестничные перила – популярная альтернатива использованию каминной доски. Вы можете добиться этого несколькими способами: с помощью самоклеящихся крючков или настенных крючков, которые ввинчиваются в дерево. перила или используя декоративную ленту или завязки для вешать что собой представляет женские чулки.

В каком направлении вешаете рождественские чулки?

Работают ли командные полосы на кирпиче?

На какие поверхности будут CommandПродукция палка? Окрашенное, окрашенное или лакированное дерево, стекло, плитка, окрашенный шлакоблок, гипс, металл и окрашенные стеновые панели. Линия продуктов Outdoor не рекомендуется для использования на грубых поверхностях, таких как цементная плита, кирпич или грубая пиленая древесина.

Чулки и подвязки. Приметы, легенды и мифы

«Юным девицам следует вести себя осмотрительнее.

Юная девица — нежный цветок, ей следует оберегать своё здоровье и цвет лица.

Голубушка! Вы сменили чулки?»

Джейн Остин, «Эмма».

С различными предметами одежды были традиционно связаны стойкие предрассудки. Фольклор изобилует упоминаниями перчаток, туфель, чулок, сорочек, подвязок, носовых платков, сумочек и пуговиц, а среди них туфли, чулки и подвязки — трио, отражающее суеверия, связанные со свадьбой.

В XVII и XVIII веках туфли и чулки символизировали удачу. Туфли бросали вслед новобрачным, когда они вступали в новую совместную жизнь, и даже в наши дни туфли часто привязывают сзади к машине молодых. В счастливую пару также кидали чулки.

Обычай бросать чулки описал француз Анри Миссон в 1698 году:

«Молодой, который при помощи Друзей раздевается в другой Комнате, в своей Ночной Рубашке спешит к своей Супруге, которую окружают ее Мать, Тетка, Сестра и Подруги, и без дальнейших церемоний ложится в кровать. Друзья Молодого берут чулки Новобрачной, а Подруги Новобрачной берут чулки Молодого. Все садятся в ногах (спиной к кровати) и бросают Чулки через Голову, стараясь попасть в Новобрачных. Если чулки Мужа, брошенные Девицей, падают на голову Молодого, это означает, что она сама вскоре выйдет замуж; эта Примета точно так же распространяется на Мужчину, бросившего чулки Супруги».

Этот обычай был жив в Шотландии еще в XIX веке. В 1823 году некто сообщал, что бросается левый чулок — в фольклоре левый часто господствует над правым. Примерно к 1850 году, хоть бросание чулок и оставалось частью свадебных увеселений, мишени поменялись, и теперь уже настала очередь невесты кидаться чулками!

Подвязки отвечали за другой вид удачи. Как вы могли догадаться, их связывали с плодовитостью. Подвязки невесты были страшно важны: они предвещали достижение цели, исполнение желаний, потомство, и за них всегда разгоралась яростная борьба. В пьесе 1700 года леди, одевающаяся на собственную свадьбу, восклицает: «Я забыла свадебные подвязки… Ах нет, они на мне! Какая за них будет борьба… и кого-нибудь ущипнут за ногу».

Развязывание свадебных подвязок было глубоко символичным действием. Анри Миссон пишет:

«Друзья Молодого стягивают с Новобрачной Подвязки, которые она перед этим развязала, чтобы они свисали, и любопытная Рука не могла подобраться слишком близко к Колену. После этого Подвязки привязываются к Шляпам Кавалеров, Подруги Новобрачной относят Новобрачную в Опочивальню, где раздевают её и кладут на Кровать».

Вы можете себе вообразить, чтобы сегодня гость на свадьбе разгуливал с подвязками невесты на шляпе? Свадебные подвязки представляли собой маленькие изящные пояски из шелковой ленты приятных расцветок. Большой популярностью пользовался голубой цвет, цвет постоянства, но красный и белый были также распространены. Зелёный считался несчастливым.

В 1908 году рассказывали об обычае в деревне близ Балморола. Когда младшая сестра выходила замуж прежде старшей, последнюю заставляли на свадьбу надеть зелёные подвязки, и она становилась жертвой в игре на свадебных торжествах; любой молодой человек, который сумеет их снять, мог жениться на ней. Неудивительно, что «ни видеть, ни носить я не хочу зелёный цвет, нет-нет!» (перевод Неймарк), — понятное дело, его избегали.

Еще одна романтическая традиция, связанная с подвязками, дожила до XIX века: юноши неслись наперегонки от церкви к дому невесты после свадебной церемонии, и победитель заявлял о праве снять левую подвязку невесты, которую впоследствии он сможет повязать вокруг колена своей настоящей возлюбленной в качестве амулета, оберегающего от неверности. И сейчас фотографы на свадьбах иногда просят невесту приподнять подол юбки, чтобы была видна подвязка (обычно голубая), невеста может даже снять ее и бросить в толпу гостей, чтобы кто-нибудь поймал.

Подвязками из кожи угря лечили от судорог и ревматизма — но сперва надо было наловить «весенних угрей»! У чулок тоже имелись магические свойства. Повешенные крест-накрест в ногах кровати с воткнутыми булавками, они отгоняли ночные кошмары и нечисть. Идея перекрещивания встречается в фольклоре также, когда речь идет о туфлях и перчатках. Невеста сможет зачать, только если подружки невесты позаботились о том, чтобы положить ее чулки на кровать крестом в брачную ночь.

Читайте также:
Как измерить влажность в помещении: особенности прибора

В качестве лекарства чулки иногда были незаменимы.

В конце 1930-х, в Шропшире, вызвали врача к одному тяжелобольному мужчине. Врач спросил его жену, как она лечила больного. «Ах, доктор, и чего я только ни делала! даже чулки его под кроватью крестом уложила!».

Чулки помогали от ангины: грязный чулок пяткой на горло оборачивался вокруг шеи и оставлялся так на всю ночь.

А ещё они могли завлечь парня. В XIX-м веке девушки Бэккингемшира считали, что для этого надо приколоть свои чулки к стене и сказать:

«На стенку вешаю чулки, чтоб сох любимый от тоски.

Пусть он ни отдыха не знает, ни радости, ни сна,

Пока не придёт и не увидит меня».

Даже принимая во внимание прискорбное отсутствие чувства стихотворного размера у этих девушек, будем надеяться, что заговор действует.

Но каков, в конце концов, самый знаменитый обычай, связанный с чулками? Ну, конечно же, рождественские чулки!

Цитата из аудиокниги «Неглиже. Нескромный взгляд под», Розмари Хоторн.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Рождественский сапожок: из Европы в Россию

Рождественский сапожок, новогодний носок, рождественский чулок — это самые распространенные названия праздничного аксессуара для подарков. Сейчас сапожки набирают свою популярность не только в Америке, но уже и в России. Они стали по-настоящему праздничным атрибутом Нового года!

Но, может, мы немного заглянем в историю и поймём, откуда началась эта традиция?!

Сначала стоит упомянуть тот факт, что прообразом современных Санта Клауса, Дед Мороза и так далее являлся реальный человек по имени Николай, родившийся в III веке в Малой Азии (на берегу Средиземного моря) в богатой семье и впоследствии ставший епископом. Унаследовав немалое состояние, Николай помогал бедным, нуждающимся, несчастным и особенно заботился о детях. После смерти Николай был канонизирован.

Сам праздник уходит своими корнями в средневековье и приурочен ко дню смерти святого Николая Чудотворца. Он как в католической, так и в православной традиции считается покровителем детей и путешественников. Предания о его стараниях помогать людям, оставаясь при этом неузнанным и незамеченным, переродились со временем в традицию оставлять детям (и взрослым) подарки втайне, ночью. Считается, что в этот день сам Николай Чудотворец спускается на землю в сопровождении ангелов, чтобы порадовать людей своими подарками.

В европейских странах принято вешать сапожки/носочки у камина, чтобы на утро найти в них подарки. Вот мы и подошли к самому главному! Как именно возникла эта традиция!

Святой любил делать добро незаметно, как сюрприз, и как-то он услышал о трёх добрых сестрах, которые жили в очень бедном домике на окраине города. Они обеднели настолько, что должны были умереть с голоду. Святой пришел к ним ночью и бросил через дымоход три золотых слитка, но, чтобы золото не попало в печь, Святой Николай прицелился так, что слитки попали в носки девушек, которые сушились возле печки. Эту историю полюбили все. С того времени и пошёл обычай — на Рождество вешать носочки к печке, чтобы Святой Николай не забыл принести всем-всем долгожданный подарок. В домах, где камина не было, сапожки прятали под ёлку или вешали в изголовье кровати, но сути традиции это никак не меняет.

Возвращаясь к нашим дням и к самой России, можно сказать, что сапожки нашли свой отклик в сердцах многих. Их стали использовать не только как «место» для подарков, а скорее как праздничное украшение интерьера. Мы не переняли традицию, а дополнили её своей теплотой, добавили чуточку своей души. С нами сапожок встречает и Новый год, и Рождество, и даже Старый Новый год!

Сейчас разнообразие сапожков радует глаз: и вышитые, и фетровые, и вязаные, и именные! Мастерицы делают их невообразимо роскошными, чтобы угодить каждому! А нам остаётся только выбрать тот сапожок, который больше всего пришёлся по душе, и ждать самой «Волшебной ночи» в году!

Благодарю всех, кто прочитал мою первую публикацию! Надеюсь, вам понравилось.

Будущее солнечной энергии

Репост

Энергия солнца является, пожалуй, самым естественным и красивым решением для удовлетворения наших энергетических потребностей. Солнечные лучи дают планете огромный энергетический потенциал – по оценкам правительства США, Земля получает свыше 173 000 тераватт энергии ежегодно, что превышает необходимое количество в 10 000 раз.

Сложность задачи состоит в том, чтобы накапливать эту энергию. В течение многих лет, низкая эффективность солнечных батарей вместе с их дороговизной отталкивала потребителей от приобретения по причине экономической невыгодности.
Однако ситуация меняется. В период с 2008 по 2013 год цена на солнечные батареи упала более, чем на 50 процентов. По оценкам экспертов, тенденция будет продолжаться и до 2017 года, стоимость упадёт ещё на 40%. Согласно исследованиям в Великобритании, финансовая доступность солнечных батарей приведёт к тому, что к 2027 энергия солнца займёт 20% от всемирного потребления энергии. Такое было невообразимо ещё несколько лет назад.

Читайте также:
Энергетики про незаконную установку приборов учета тепла

В то время как технологии постепенно становятся всё более доступными, вопрос встаёт о принятии их в массах. Итак, каково же возможное развитие солнечной энергии?

Каждая новая технология открывает возможности для бизнеса. Tesla и Panasonic уже планируют открытие огромного завода по производству солнечных панелей в Буффало, штат Нью-Йорк. PowerWall, разработанный компанией Tesla Motors, является одним из самых известных бытовых устройств хранения энергии в мире. Крупные игроки – не единственные, кто выигрывает от развития этой технологии.
Землевладельцы и фермеры смогут сдавать в аренду свои территории под строительство новых солнечных ферм. Спрос на кабели среднего напряжения так же может возрасти, потому как батареи необходимо подключить к сети.

Плавательные панели

В некоторых странах места для плантаций солнечных батарей отсутствуют. Хорошее решение – батарея, которая находится на воде. Ciel & Terre International, французская энергетическая компания, работает над крупным проектом плавающих солнечных панелей с 2011 года. У берегов Великобритании уже установлена пробная версия. На данный момент реализация данного проекта рассматривается в Японии, Франции и Индии.

Беспроводное питание из космоса

Японское космическое агентство считает, что «чем ближе к Солнцу, тем больше возможность накапливать и эффективно управлять энергией». Проект космических солнечных энергетических систем планирует запустить батареи на околоземную орбиту. Собранная энергия будет передана обратна на Землю по беспроводной сети при помощи микроволн. Технология станет настоящим прорывом в науке, если проект обернётся успешным.

Деревья-накопители энергии

Финская команда исследователей работает над созданием деревьев, которые накапливают солнечную энергию в листьях. Планируется, что листья пойдут в питание малой бытовой техники и мобильных телефонов. Вероятнее всего, деревья будут напечатаны 3D принтером с использованием биоматериалов, которые имитируют органическое растение. Каждый листочек генерирует энергию из солнечного света, но так же использует кинетическую энергию ветра. Деревья рассчитаны на функционирование как в помещении, так и на открытом воздухе. Проект в настоящее время на стадии прототипной разработки в Техническом исследовательском центре в Финляндии.

Эффективность

В настоящее время, эффективность – это наибольшее препятствие для развития солнечной энергии. На данный момент, более 80% всех солнечных батарей имеют энергетическую эффективность менее 15%. Большинство этих панелей стационарные, в связи с чем они пропускают большое количество солнечного света. Улучшенный дизайн, состав и применение поглощающих солнечный свет наночастиц повысит эффективность.

Солнечная энергия – это наше будущее. В настоящее время человек совершает лишь первые шаги в раскрытии истинного потенциала Солнца. Эта звезда даёт нам намного больше энергии, нежели человечество потребляет ежегодно. Мировые исследователи работают над тем, чтобы вывести самый эффективный способ накопления и преобразования солнечных лучей в энергию.

ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ

Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ

Солнечная энергетика: эффективность, будущее и первоскитовые панели

Солнечная энергетика — это одна из тех сфер, где благие намерения человечества почти всегда опережают технические возможности и экономические реалии. Создатель первой солнечной панели, американский изобретатель Чарльз Фриттс, ещё в 1881 году предсказывал, что уже совсем скоро обычные электростанции будут заменены на солнечные. И это несмотря на то, что созданная им установка имела КПД всего 1%, то есть именно столько солнечного света превращалось в электричество. Спустя 140 лет мечта Чарльза Фриттса так и не сбылась: гелиоэнергетика всё ещё борется за место под солнцем с ветряными генераторами, геотермальными источниками и полезными ископаемыми. Что тормозит солнечную революцию и какими методами пытаются улучшить солнечные батареи? Казалось бы, придумав солнечную энергетику, мы протянули невидимый провод к самому мощному реактору в нашей планетной системе, который не погаснет как минимум ещё пять миллиардов лет (а там подумаем).

В последние годы инвестиции в солнечную энергетику стагнируют. Источник: International Renewable Energy Agency (IRENA), Frankfurt School-UNEP Centre/BNEF

  • Наша продукция
  • Презентации по направлениям
  • Инжиниринг
  • Консалтинг
  • Металлообработка
  • Моделирование
  • Разработки

Но человечеству понадобился ещё почти век, чтобы увеличить эффективность солнечной панели всего на пять процентных пунктов — это случилось, когда учёные из Bell Labs создали более мощную батарею в 1954 году.

Тем не менее прогресс в гелиоэнергетике в последние годы был внушительным. В неё инвестируют больше, чем в какой-либо другой возобновляемый источник энергии (ВИЭ). При этом средняя стоимость «солнечного электричества» с 2010 года снизилась с $0,371 до $0,085 за кВт·ч.

Читайте также:
Про кондиционер с низкотемпературным очищением воздуха

И всё же солнечная электроэнергетика пока не завоевала мир. Даже Германия, которая за первое полугодие 2019 года выработала на ВИЭ больше энергии, чем на угле и атоме, не спешит расставаться с мощностями на буром угле. К 2030 году планируется сократить их с текущих 45 ГВт до 37 ГВт. При этом во многом экономический успех солнечной энергетики по-прежнему обеспечивается налоговой политикой и субсидиями. Этим объясняется один парадокс: оптовые цены на электроэнергию в ФРГ одни из самых низких в Европе, а конечные — одни из самых высоких.

Почему солнечной электроэнергетике всё ещё нужны «финансовые костыли»? Причины такие:

  • солнечная энергия остаётся не самой эффективной — коэффициент использования установленной мощности (КИУМ), то есть отношение фактически выработанной энергии к проектной, установленной производителем для солнечных панелей, составляет 13-18% зимой и 30-35% летом, что является самым низким значением среди других ВИЭ, а также газа и угля;
  • отсюда и более высокая стоимость солнечной энергии — в среднем по миру она составляет $0,085 за кВт·ч, тогда как в биоэнергетике — $0,062, у геотермальных источников — $0,072, гидроэлектростанций — $0,047; дороже только ближайший конкурент — ветряные установки вдали от моря с показателем $0,127, хотя морские прибрежные дают энергию по $0,056 за кВт·ч;
  • нестабильность поступления фотонов от светила заставляет использовать дополнительные приборы для накопления и распределения энергии (о варианте решения этой проблемы мы, кстати, рассказывали);
  • для солнечной энергосистемы нужно много места, будь то огромная станция в поле (а земля вблизи городов дорогая) или домашняя электроустановка, к которой надо не только подключить инвертор и аккумулятор, но и обеспечить доступ для техобслуживания.

Чтобы решить эти проблемы, нужно сделать солнечные панели более дешёвыми, эффективными и — в прямом смысле этого слова — гибкими.

Кремниевый диктат

Солнечные панели состоят из материала, который хорошо улавливает энергию света. Обычно этот материал зажат между металлическими пластинами, которые переносят захваченную энергию далее по цепи. В той самой солнечной панели 1954 года выпуска за авторством инженеров Bell Labs главную роль играл кремний. Он же со многими модификациями и по сей день господствует в производстве фотоэлементов для солнечных батарей, составляя основу 95% панелей.

За полвека человечество разработало несколько типов кремниевых солнечных батарей. Самую большую долю мирового рынка занимают поликристаллические кремниевые панели. Пользуются спросом они благодаря относительной доступности, которая обусловлена более дешёвой технологией производства. Но и КПД у таких панелей ниже, чем у аналогов (14-17%, максимум — 22%). Более дорогой, но и более эффективный вариант — монокристаллические кремниевые панели. Их КПД составляет порядка 22% (максимум — 27%).

Какие технологии производства солнечных панелей господствуют в мире. Как видим, по большей части производятся поликристаллические солнечные модули (61%), в меньшей степени — моно- (32%), и совсем немного тонкопленочных (аморфных) — 5%. Источник: Fraunhofer Institute for Solar Energy Systems; PSE Conferences & Consulting GmbH

Несмотря на прогресс в экономике и технике солнечных панелей, их стоимость остаётся высокой. К ней нужно прибавлять и расходы на создание собственно энергетической установки (контроллер, инвертор, аккумулятор), без которой батарея не работает. В разных странах эти величины колеблются, но доля расходов, собственно, на фотоэлектрический блок всё равно высока.

Из чего складывается стоимость «солнечного киловатта» в разных странах? Как видно, в странах-лидерах внедрения гелиоэнергетики от трети до почти половины расходов — это стоимость модуля. Источник: International Renewable Energy Agency (IRENA)

Не кремнием единым

В попытке разработать более эффективные панели были созданы тонкоплёночные (аморфные) модули. Их суть проста: улавливающий свет материал наносится очень тонким слоем на плёнку, благодаря чему панель становится более лёгкой и гибкой, а её производство требует меньше материалов.

Правда, КПД у них намного меньше, чем у собратьев по солнечному цеху — 6-8% для кремниевых вариантов. Тем не менее, по себестоимости тонкоплёночные солнечные элементы выигрывают, потому что для них требуется слой светоулавливающего вещества шириной всего от 2 до 8 мкм, что составляет всего около 1% от того, что используется в обычных кристаллических модулях.

Но тонкоплёночные панели не идеальны: из-за малого КПД они требуют примерно в 2,5 раза больше площади для размещения. Это подвигло учёных дальше искать более эффективный материал, который, с одной стороны, подойдёт для плёночной технологии, а с другой — будет эффективнее. Так появились панели, в основу которых положены более экзотичные соединения: теллурид кадмия (CdTe) и селенид индия-меди-галлия (CIGS). Эти элементы имеют больший КПД — в первом случае показатель достигает 22%, а во втором — 21%. Такие системы меньше теряют эффективность при повышении температуры и лучше работают при плохой освещённости. Однако их стоимость выше кремниевых аналогов ввиду редкости используемых материалов. Некоторые учёные вовсе считают, что такие панели никогда не будут преобладать на рынке, потому что для них не хватит природных ресурсов. Поэтому такой тип солнечных батарей стал нишевым товаром, подходящим для специфических целей узкого круга потребителей. Чаще всего тонкоплёночные панели используют потребители с большим запасом места: производственные предприятия, офисные здания, университеты и научные центры, большие многоквартирные дома (с просторной крышей), а также, собственно, солнечные фермы — большие электростанции. Эффект масштаба и относительная простота установки более прочных и лёгких тонкоплёночных панелей помогает нивелировать их сравнительно более низкую (по сравнению кристаллическим кремнием) эффективность. Между тем поиски идеального «ловца» фотонов продолжаются.

Читайте также:
Баня и налог на имущество: случаи, когда придется платить

Привет от русского графа

Кандидатом на роль возможного спасителя гелиоэнергетики может стать материал под названием перовскит. Первый из таких — титанат кальция — в 1839 году отыскал во глубине уральских руд немец Густав Розе и назвал его именем русского коллекционера горных пород графа Л. А. Перовского, поэтому с тех пор иногда именуется «русским минералом».

Сегодня, когда говорят о перовските, чаще всего имеют в виду целый класс веществ, которые имеют одинаковую трёхчастную кристаллическую структуру, впервые выявленную у титаната кальция. Хотя в чистом виде такие вещества редко встречаются в природе, их легко получить из массы других соединений, а кристаллы перовскитов можно выращивать искусственно. Каждая часть структуры перовскита может быть изготовлена из различных элементов, что даёт очень широкий диапазон возможных составов «ловца фотонов», включающих свинец, барий, лантан и другие элементы. Так, уже установлено, что соединение перовскита с некоторыми щелочными металлами позволяет создать солнечный фотоэлемент с КПД до 22%, а теоретическая мощность соединений на основе перовскита достигает 31%.

Однако работать с перовскитом не так просто, и мы в этом убедились. После нанесения на плёнку перовскит кристаллизуется очень быстро, из-за чего трудно создать ровный слой на большой площади. Между тем, в этом и заключается главная задача при создании солнечного элемента: достичь как можно большей площади поверхности с сохранением при этом высокой эффективности преобразования энергии.

В июне 2018 года Toshiba изготовила тонкоплёночный солнечный элемент на основе перовскита с самой большой площадью поверхности и при этом самой высокой в мире эффективностью преобразования энергии. Как это удалось сделать?

Мы разделили ингредиенты, необходимые для образования перовскита (раствор йодида свинца — PbI₂, метиламмонийгидройодид — MAI). Сначала мы покрыли подложку раствором PbI₂, а затем раствором MAI. Благодаря этому мы смогли отрегулировать скорость роста кристаллов на плёнке, что дало возможность создать ровный и тонкий слой большой площади.

Технология производства солнечного модуля на основе перовскита. По сути, мы создаем «чернила» из составных элементов перовскита и «размазываем» их по подложке. Источник: Toshiba

Экономика перовскита

Хотя о конкретных экономических показателях применения перовскита говорить рано, так как широкое практическое использование этого материала в солнечных батареях прогнозируется после 2025 года, у «русского минерала» есть предпосылки большого и успешного будущего. По прогнозам экспертов Национальной лаборатории возобновляемой энергии США (National Renewable Energy Laboratory, NREL), производство перовскитовых панелей будет в десять раз дешевле, чем у кремниевых аналогов. Не в последнюю очередь потому, для изготовления господствующих ныне кремниевых солнечных элементов требуется обработка материала при температуре более 1 400 градусов и, соответственно, сложное оборудование. С перовскитами, между тем, можно управиться в жидком растворе при температуре 100 градусов на несложном оборудовании (как в нашем эксперименте).

Созданный нами модуль на основе перовскита имеет площадь 703 кв. см. А полученная нами эффективность преобразования энергии достигла 12%. Источник: Toshiba

Есть ещё два преимущества фотоэлементов на перовските — гибкость и прозрачность. Благодаря им солнечные батареи из перовскита могут быть установлены в самых разных местах: на стенах, на крышах транспортных средств и зданий, на окнах и даже на одежде.

Регулируя толщину слоя перовскита, можно контролировать прозрачность солнечных элементов на основе этого материала. К примеру, его можно использовать в покрытии теплиц: нужное количество фотонов будут получать растения, а часть из них — электросеть фермерского хозяйства. Эксперименты по определению разумного соотношения, потребляемого растениями и панелями света, уже проводятся у нас в Японии.

Ещё одна возможная сфера применений — оснащение электрокаров солнечными панелями на основе перовскита. Пока мы находимся в самом начале этого пути, но уже есть первые наработки. Так, учёные из Западного резервного университета Кейза (шт. Огайо, США) экспериментировали с использованием небольших солнечных батарей на основе перовскита для подзарядки аккумуляторов электромобилей. Они подключили четыре солнечных элемента на основе перовскита к литиевым батареям. При подключении для зарядки небольших литий-ионных батарей размером с монету команда учёных достигла эффективности преобразования в 7,8%, что в два раза меньше, чем у обычных тонкоплёночных солнечных батарей.

Читайте также:
Тепловые газовые и электронные пушки: основные отличия

Не исключено также, что в скором времени ленты из перовскитовых солнечных панелей украсят вашу рубашку или пиджак. Известно уже о нанесении перовскита на полиуретановую подложку, КПД которой в поглощении солнца достигло 5,72%.

А в России пошли ещё дальше в экспериментах с перовскитом. Как оказалось, этот материал может быть хорошим излучателем и подходит для генерации света. Учёные из Московского института стали и сплавов (МИСиС) и Санкт-Петербургского университета информационных технологий механики и оптики разработали солнечный элемент на основе перовскита, который одновременно может работать как батарея и как светодиод. В основу положен галогенидный перовскит. Для переключения функций достаточно изменять подаваемое на прибор напряжение: при уровне до 1,0 В прототип работает как солнечный элемент, а если подать более 2,0 В — включается режим светодиода. В перспективе учёные могут разработать стекольные плёнки, которые в дневное время будут вырабатывать энергию, а в тёмное время суток излучать свет. При этом максимальная толщина плёнки не превысит 3 мкм, что позволит сохранить прозрачность стекла. То есть, темно не будет.

Практически по всем параметрам перовскит превосходит конкурентов, включая среднюю себестоимость электроэнергии на всем протяжении жизни солнечной батареи из заданного материала (Levelised Cost of Energy, LCOE). Сложности возможны только с утилизацией отживших панелей ввиду токсичности перовскитовых соединений. Источник: Group for Molecular Engineering of Functional Materials (GMF), Швейцария

Эффект масштаба

Итак, перовскит может помочь продвижению гелиоэнергетики не только за счёт своей экономической доступности, но и в силу намного более широкой области применения: помимо промышленности, городского и сельского хозяйства, панели на основе перовскита могут использоваться даже в быту, в частности в производстве автомобилей, мелкой электроники, бытовой техники и даже одежды. А чем более широкий спектр применения, тем выше ёмкость рынка, что привлечёт новых инвесторов и снижение стоимости солнечного электричества.

  • Наша продукция
  • Презентации по направлениям
  • Инжиниринг
  • Консалтинг
  • Металлообработка
  • Моделирование
  • Разработки

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

Солнечная энергетика сегодня и перспективы её дальнейшего развития

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация». Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Подробнее можете почитать на Википедии: Фотовольтарический эффект

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели:

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в отдельной статье.

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar. Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. Черепица Solar Roof содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае. Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.
Читайте также:
Инструкция по «выживанию». В доме отключили или еще не включили отопление.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ. Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Так одной из крупнейших в нашей стране является Орская СЭС. Она состоит из 100 тыс. модулей, выдающих суммарную мощность 25 МВт. Выработанное электричество подаётся в Единую энергетическую систему России (ЕЭС).

Самой мощной сегодня является СЭС Перово, расположенная в Республике Крым. Она выдаёт более 105 МВт, что на момент открытия станции было мировым рекордом. СЭС Перово состоит из 440 000 фотоэлектрических модулей и занимает площадь 259 футбольных полей.

Вообще в Крыму солнечная энергетика неплохо развита – там более десятка солнечных электростанций мощностью от 20 МВт. Правда, вся полученная электроэнергия уходит сугубо на нужды полуострова.

К 2020 году в России планируется построить 4 крупных СЭС, мощность которых позволит увеличить долю солнечной энергии до 1% от всего энергобаланса страны.

Таким образом, уже сегодня можно с уверенностью сказать, что солнечная энергетика способна в недалёкой перспективе выступить полноценной альтернативой традиционным способам получения электроэнергии. И даже в России эта отрасль хоть и медленно, но развивается.

Читайте также:
Что взять на шашлыки: перечень продуктов и предметов

О выходе новых статей рассказываем в соцсетях

Яркое будущее солнечной энергетики

Подробное и простое описание работы солнечных панелей и прогнозы на будущее


Как пьют чай в Тибете

Наш недавний обзор солнечных панелей мог оставить у вас впечатление, что сбор солнечной энергии – дело новое, однако люди эксплуатируют её уже тысячи лет. С её помощью они обогревают дома, готовят и греют воду. Некоторые из самых ранних документов, описывающих сбор солнечной энергии, восходят к древней Греции. Сам Сократ говорил, «в домах, смотрящих на юг, зимнее солнце проникает через галерею, а летом путь солнца проходит над нашей головою и прямо над крышей, из-за чего образуется тень». Он описывает то, как греческая архитектура использовала зависимость солнечных путей от времён года.

В V столетии до н.э. греки столкнулись с энергетическим кризисом. Преобладавшее топливо, древесный уголь, заканчивалось, поскольку они вырубили все леса для готовки и обогрева жилищ. Были введены квоты на лес и уголь, а оливковые рощи приходилось защищать от граждан. Греки подошли к проблеме кризиса, тщательно планируя городскую застройку, чтобы удостовериться в том, что каждый дом может воспользоваться преимуществами солнечного света, описанными Сократом. Комбинация технологий и просвещённых регуляторов сработала, и кризиса удалось избежать.

Со временем технологии сбора тепловой энергии солнца только росли. Колонисты Новой Англии позаимствовали технологии строительства домов у древних греков, чтобы согреваться в холодные зимы. Простые пассивные солнечные водонагреватели, не сложнее покрашенной в чёрный цвет бочки, продавались в США в конце XIX века. С тех пор были разработаны более сложные солнечные коллекторы, прокачивающие воду через поглощающие или фокусирующие свет панели. Горячая вода хранится в изолированном баке. В замерзающих климатах используется двухжидкостная система, в которой солнце греет смесь воды с антифризом, проходящую через спираль в баке для хранения воды, выполняющего ещё одну роль, роль теплообменника.


Солнечные коллекторы на крышах Кипра

Сегодня доступно множество сложных коммерческих систем для нагрева воды и воздуха в доме. Солнечные коллекторы устанавливаются по всему миру, и больше всего их в пересчёте на душу населения стоит в Австрии, на Кипре и в Израиле.


Солнечный коллектор на крыше в Вашингтоне D.C.

Современная история солнечных панелей начинается с 1954 года, с открытия практического способа добычи электричества из света: лаборатории Белла открыли, что из кремния можно делать фотовольтаический материал. Это открытие стало основой сегодняшних солнечных панелей (устройств, превращающих свет в электричество) и запустило новую эру солнечной энергии. С помощью интенсивных исследований сегодняшняя эра солнечной энергии продолжается, и солнце намеревается стать главным источником энергии в будущем.

Что такое солнечный элемент?

Самый распространённый тип солнечного элемента – полупроводниковое устройство из кремния – дальнего родственника твердотельного диода. Солнечные панели делаются из набора солнечных элементов, подключенных друг к другу и создающих на выходе ток с нужным напряжением и силой. Элементы окружаются защитным кожухом и накрываются оконным стеклом.

Солнечные элементы генерируют электричество благодаря фотовольтаическому эффекту, открытому совсем не в лабораториях Белла. Впервые его в 1839 году обнаружил французский физик Александр Эдмон Беккерель, сын физика Антуана Сезара Беккереля и отец физика Антуана Анри Беккереля, получившего нобелевскую премию и открывшего радиоактивность. Чуть больше чем через сто лет в лаборатории Белла был достигнут прорыв в изготовлении солнечных элементов, что и стало основой для создания самого распространённого типа солнечных батарей.

На языке физики твёрдого тела, солнечный элемент создаётся на базе p-n-перехода в кристалле кремния. Переход создаётся через добавление в разные области кристалла небольших количеств разных дефектов; интерфейс между этими областями и будет переходом. На стороне n ток переносят электроны, а на стороне p – дырками, где электроны отсутствуют. В регионах, примыкающих к интерфейсу, диффузия зарядов создаёт внутренний потенциал. Когда в кристалл попадает фотон, обладающий достаточной энергией, он может выбить электрон из атома, и создать новую пару электрон-дырка.

Только что освобождённый электрон притягивается к дыркам с другой стороны перехода, но из-за внутреннего потенциала он не может перейти его. Но если электронам предоставить путь через внешний контур, они пойдут по нему и осветят по пути наши дома. Дойдя до другой стороны, они рекомбинируются с дырками. Этот процесс продолжается, пока светит Солнце.

Требуемая для освобождения связанного электрона энергия называется шириной запрещённой зоны. Это ключ к пониманию того, почему у фотовольтаических элементов есть присущее им ограничение по эффективности. Ширина запрещённой зоны – постоянное свойство кристалла и его примесей. Примеси регулируются таким образом, что у солнечного элемента ширина запрещённой зоны оказывается близкой к энергии фотона из видимого диапазона спектра. Такой выбор диктуется практическими соображениями, поскольку видимый свет не поглощается атмосферой (иначе говоря, люди в результате эволюции приобрели способность видеть свет с самыми распространёнными длинами волн).

Читайте также:
Как сделать камин в построенном доме: алгоритм действий

Энергия фотонов квантуется. Фотон с энергией меньшей, чем ширина запрещённой зоны (например, из инфракрасной части спектра), не сможет создать переносчик заряда. Он просто нагреет панель. Два инфракрасных фотона тоже не сработают, даже если их общей энергии будет достаточно. Фотон излишне большой энергии (допустим, из ультрафиолетового диапазона) выбьет электрон, но лишняя энергия будет потрачена зря.

Поскольку эффективность определяется как количество энергии света, падающего на панель, делённое на количество полученной электроэнергии – и поскольку значительная часть этой энергии будет потерянной – эффективность не может достичь 100%.

Ширина запрещённой зоны у кремниевого солнечного элемента равна 1,1 эВ. Как видно из диаграммы электромагнитного спектра, видимый спектр находится в области чуть повыше, поэтому любой видимый свет даст нам электроэнергию. Но также это значит, что часть энергии каждого поглощённого фотона теряется и превращается в тепло.

В результате получается, что даже у идеальной солнечной панели, произведённой в безупречных условиях, теоретический максимум эффективности составит порядка 33%. У коммерчески доступных панелей эффективность составляет обычно 20%.

Перовскиты

Большая часть коммерчески устанавливаемых солнечных панелей делается из описанных выше кремниевых ячеек. Но в лабораториях всего мира ведутся исследования других материалов и технологий.

Одна из самых многообещающих областей последнего времени – изучение материалов под названием перовскиты. Минерал перовскит, CaTiO3, был назван в 1839 году в честь русского государственного деятеля графа Л. А. Перовского (1792-1856), который был коллекционером минералов. Минерал можно найти на любом из континентов Земли и в облаках, по меньшей мере, одной экзопланеты. Перовскитами также называют синтетические материалы, имеющие ту же ромбическую структуру кристалла, что и естественный перовскит, и обладающие схожей по структуре химической формулой.

В зависимости от элементов, перовскиты демонстрируют различные полезные свойства, такие, как сверхпроводимость, гигантское магнетосопротивление, и фотовольтаические свойства. Их использование в солнечных ячейках вызвало много оптимизма, поскольку их эффективность в лабораторных исследованиях возросла за последние 7 лет с 3,8% до 20,1%. Быстрый прогресс вселяет веру в будущее, особенно в связи с тем, что ограничения эффективности становятся всё яснее.

В недавних экспериментах в Лос-Аламосе было показано, что солнечные элементы из определённых перовскитов приблизились по эффективности к кремнию, будучи при этом дешевле и проще в изготовлении. Секрет привлекательности перовскитов в возможности просто и быстро выращивать кристаллы миллиметровых размеров без дефектов на тонкой плёнке. Это очень большой размер для идеальной кристаллической решётки, которая, в свою очередь, позволяет электрону путешествовать по кристаллу без помех. Это качество частично компенсирует неидеальную ширину запрещённой зоны в 1,4 эВ, по сравнению с почти идеальным значением для кремния – 1,1 эВ.

Большая часть исследований, направленных на увеличение эффективности перовскитов, связана с поиском путей устранения дефектов в кристаллах. Конечная цель – изготовить целый слой для элемента из идеальной кристаллической решётки. Исследователи из MIT недавно добились большого прогресса в этом вопросе. Они обнаружили, как можно «заживлять» дефекты плёнки, сделанной из определённого перовскита, облучая её светом. Этот метод гораздо лучше предыдущих методов, включавших химические ванны или электрический ток, благодаря отсутствию контакта с плёнкой.

Приведут ли перовскиты к революции в стоимости или эффективности солнечных панелей, пока неясно. Изготавливать их легко, но пока что они слишком быстро распадаются.

Множество исследователей пытается решить проблему распада. Совместное исследование китайцев и швейцарцев привело к получению нового способа формирования ячейки из перовскита, избавленной от необходимости движения дырок. Поскольку деградирует именно слой с дырочной проводимостью, материал должен быть гораздо более стабильным.


Перовскитовые солнечные ячейки на оловянной основе

Недавнее сообщение из лаборатории Беркли описывает, как перовскиты однажды смогут достичь теоретического лимита эффективности в 31%, и всё равно остаться более дешёвыми в производстве, чем кремниевые. Исследователи измерили эффективность преобразования различных зернистых поверхностей при помощи атомной микроскопии, измеряющей фотопроводимость. Они обнаружили, что у разных граней сильно отличается эффективность. Теперь исследователи считают, что могут найти способ производить плёнку, на которой с электродами будут соединены только самые эффективные грани. Это может привести к достижению ячейкой эффективности в 31%. Если это сработает, то станет революционным прорывом в технологии.

Другие направления исследований

Возможно производство многослойных панелей, поскольку ширину запрещённой зоны можно настраивать, изменяя добавки. Каждый слой можно настроить на определённую длину волны. Такие ячейки теоретически могут достигать 40% эффективности, но пока остаются дорогими. В результате их проще найти на спутнике НАСА, чем на крыше дома.

В исследовании учёных из Оксфорда и Института кремниевой фотовольтаики в Берлине многослойность объединили с перовскитами. Работая над проблемой разлагаемости материала, команда открыла возможность создавать перовскит с настраиваемой шириной запрещённой зоны. Им удалось сделать версию ячейки с шириной зоны в 1,74 эВ, что практически идеально для изготовления в паре с кремниевым слоем. Это может привести к созданию недорогих ячеек с эффективностью в 30%.

Читайте также:
Эфирные масла в бане могут нести вред организму?

Группа из Нотрдамского университета разработала фотовольтаическую краску из полупроводниковых наночастиц. Этот материал пока ещё не настолько эффективный, чтобы заменить солнечные панели, но производить его проще. Среди преимуществ – возможность нанесения на разные поверхности. В потенциале его будет проще применять, чем жёсткие панели, которые необходимо крепить на крышу.

Несколько лет назад команда из MIT достигла прогресса в создании солнечного теплового топлива. Такое вещество может хранить солнечную энергию внутри себя долгое время, а затем выдавать её по запросу при применении катализатора или нагревании. Топливо достигает это через нереактивное преобразование своих молекул. В ответ на солнечное излучение молекулы преобразуются в фотоизомеры: химическая формула та же, но форма меняется. Солнечная энергия сохраняется в виде добавочной энергии в межмолекулярных связях изомера, который можно представить, как более высокоэнергетическое состояние изначальной молекулы. После запуска реакции молекулы переходят в оригинальное состояние, преобразуя хранившуюся энергию в тепло. Тепло можно использовать напрямую или преобразовывать в электричество. Такая идея потенциально устраняет необходимость в использовании аккумуляторов. Топливо можно перевозить и использовать полученную энергию где-то ещё.

После публикации работы из MIT, в которой использовался фульвален дирутения, некоторые лаборатории пытаются решить проблемы с производством и стоимостью материалов, и разработать систему, в которой топливо будет достаточно стабильным в заряженном состоянии, и способным «перезаряжаться», чтобы его можно было использовать многократно. Всего два года назад те же учёные из MIT создали солнечное топливо, способное испытать не менее 2000 циклов зарядки/разрядки без видимого ухудшения производительности.

Инновация состояла в соединении топлива (это был азобензол) с углеродными нанотрубками. В результате его молекулы выстраивались определённым образом. Получившееся топливо обладало эффективностью в 14%, и плотностью энергии схожей со свинцово-кислотным аккумулятором.


Наночастицы сульфида меди-цинка-олова

В более новых работах солнечное топливо изготовили в виде прозрачных плёнок, которые можно наклевать на лобовое стекло автомобиля. Ночью плёнки растапливают лёд за счёт энергии, набранной в течение дня. Скорость прогресса в этой области не оставляет сомнений, что солнечное тепловое топливо вскоре перенесётся из лабораторий в область привычных технологий.

Ещё один способ создания топлива напрямую из солнечного света (искусственный фотосинтез) разрабатывается исследователями из Иллинойсского университета в Чикаго. Их «искусственные листья» используют солнечный свет для превращения атмосферного углекислого газа в «синтез-газ», в смесь водорода и монооксида углерода. Синтез-газ можно сжигать или преобразовывать в более привычные виды топлива. Процесс помогает удалять лишний CO2 из атмосферы.

Команда из Стэнфорда создала прототип солнечной ячейки с использованием углеродных нанотрубок и фуллеренов вместо кремния. Их эффективность гораздо ниже коммерческих панелей, зато для их создания используется только углерод. В прототипе нет никаких токсичных материалов. Это более экологичная альтернатива кремнию, но для достижения экономической выгоды ей нужно поработать над эффективностью.

Продолжаются исследования и других материалов и технологий производства. Одна из многообещающих областей исследований включает монослои, материалы со слоем толщиной в одну молекулу (типа графена). Хотя абсолютная фотовольтаическая эффективность таких материалов невелика, их эффективность на единицу массы превышает привычные кремниевые панели в тысячи раз.

Другие исследователи пытаются изготавливать солнечные элементы с промежуточным диапазоном. Идея в том, чтобы создать материал с наноструктурой или особый сплав, в котором смогут работать фотоны с энергией, недостаточной для преодоления обычной ширины запрещённой зоны. В таком материале пара низкоэнергетических фотонов сможет выбить электрон, чего нельзя добиться в обычных твердотельных устройствах. Потенциально такие устройства будут более эффективными, так как задействуют больший диапазон длин волн.

Разнообразие областей исследования фотовольтаических элементов и материалов, и быстрый уверенный прогресс с момента изобретения кремниевого элемента в 1954 году вселяет уверенность, что энтузиазм принятия солнечной энергии не только сохранится, но и будет возрастать.

И эти исследования происходят как раз вовремя. В недавнем мета-исследовании было показано, что солнечная энергия по соотношению полученной энергии к затраченной, или по энергетической рентабельности, обогнала нефть и газ. Это существенный поворотный момент.

Мало сомнений в том, что солнечная энергия в результате превратится в значительную, если не в доминирующую, форму энергии как в промышленности, так и в частном секторе. Остаётся надеяться, что уменьшение необходимости в сжигании ископаемого топлива случится до того, как произойдёт необратимое изменение глобального климата.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: