Плохо греют батареи: причины и способы починки

Не прогревается батарея отопления – причины и способы устранения неполадок

Многие попадали в ситуацию, когда не греет батарея отопления или прогрев недостаточный. Причин плохого прогревания радиатора немного, но в каждом случае они устраняются по-разному.

Основные сведения об устройстве отопительной системы

Система отопления бывает двух видов: однотрубная, так называемая ленинградка, и двухтрубная. В многоквартирных домах применяется преимущественно однотрубная. В абсолютном большинстве индивидуальных владений и последних новостройках используется двухтрубная система.

В однотрубной системе теплоноситель поступает на единственный стояк, откуда распределяется по радиаторам. Подача осуществляется с первого или последнего этажа, что не имеет принципиального значения. Для равномерной подачи воды по всем батареям применяют байпасы. Благодаря им в радиатор попадает необходимое количество воды, остальная движется к следующим отделам. Недостаток однотрубной системы – лучше прогреваются батареи, которые находятся ближе ко входу или котлу. Самые дальние в системе могут прогреваться недостаточно.

Двухтрубная система отопления

В двухтрубной системе имеется независимое подключение каждого радиатора к двум стоякам. Из одного подается горячая вода, в другой уходит охлажденная. Незнание особенностей отопительных систем разного типа иногда приводит к печальным последствиям, особенно когда за ремонт принимаются малоквалифицированные работники.

Нечасто, но имеют место случаи, когда старые батареи в однотрубной системе заменяют современными алюминиевыми. Ожидаемого эффекта не происходит, потому что алюминиевые приборы рассчитаны на двухтрубную систему, ток теплоносителя ослабевает. Более того, из-за слабой циркуляции воды они засоряются. Выход один – отремонтировать старые батареи или установить новые, подходящие для однотрубной системы.

Основные причины плохого прогрева батарей и способы их устранения

Основных причин, почему не греют батареи, две – воздушная пробка и засорение радиаторов. Воздушная пробка мешает циркуляции теплоносителя, радиатор прогревается плохо или остается холодным. Выход из ситуации простой – удалить воздух.

Современные системы имеют на каждой батарее вверху специальный краник для спуска воздуха. Он проворачивается отверткой или переходником. Если в системе есть воздух, вы услышите шипение. Кран держат некоторое время открытым, пока из него не потечет теплоноситель. Если воздушная пробка очень большая, возможно, за один раз полностью стравить воздух не выйдет. Подождите десяток минут, повторите попытку, пока не почувствуете, что батарея прогревается полностью.

Кран для спуска воздуха

Не выпускайте много теплоносителя, надеясь удалить воздух вместе с ним. Это грозит потерей давления и возможной остановкой котла в частном доме.

На давно установленных чугунных радиаторах кран для спуска воздуха, скорее всего, отсутствует. Несложная работа по стравливанию воздуха превращается в сложную и грязную. Существует два подхода к удалению воздуха из чугунной батареи. Первый – через соединительную муфту на подводе теплоносителя к радиатору, второй – ослаблением заглушки в батарее. В каждом случае не требуется полностью выкручивать муфту или заглушку, их немного проворачивают до появления шипения.

Важно определить, в какую сторону следует отворачивать муфту или заглушку, ведь на радиаторах применяют и правую и левую резьбу. Куда отворачивается муфта, определяют по выступающей части резьбы. На заглушке с левой резьбой выбита буква «Л», отворачивают ее в правую сторону. Важно не переусердствовать, особенно отворачивая муфту, ведь трубы могут быть ржавыми, и от чрезмерного усилия способны разрушиться. На всякий случай перед заворачиванием намотайте на резьбу немного пакли с краской или фумленту, чтобы не просачивалась вода по нарушенному соединению.

Засорение радиаторов основная причина плохого теплоснабжения

Засорение радиаторов – вторая распространенная причина плохого теплоснабжения. Система засоряется по двум причинам: физический износ вследствие долговременной эксплуатации или подача в систему грязной воды без фильтрации. Чаще на внутренних стенках многие годы откладывались соли и система забилась. Иногда отложения настолько мощные, что теплоноситель совершенно не может пробиться сквозь узенькие щели. Выход один – замена радиаторов, иногда также труб.

Не сливайте воду без крайней необходимости. Каждая порция свежей воды добавляет отложений и засоряет систему.

Если засорение незначительное, батареи промывают. Работы лучше проводить при неработающем отоплении. Если приходится прибегнуть к такой операции во время отопительного сезона. Тогда отключите батареи, повернув краны, и снимите. Не все системы имеют краны для отключения радиаторов. Перед очисткой системы в индивидуальных владениях сливают воду, в многоэтажном доме перекрывают подачу. Во время отопительного сезона соблюдайте осторожность – вода очень горячая.

Прочищают батарею под высоким давлением. Для этого батареи выносят на улицу, шлангом герметично соединяют батарею с источником воды и продувают. Промыть водой из крана не выйдет, часть мусора все равно останется в радиаторе. Если обнаружено засорение в одной батарее, промойте и другие, они почти наверняка тоже засорены.

Почему не прогревается батарея в частном доме

В частном секторе помимо вышеперечисленных причин неудовлетворительной работы отопления встречаются и другие. Частные дома имеют автономное отопление практически 100-процентно. Причиной плохого нагрева может быть отопительный котел. Вероятнее всего, мощность котла рассчитана неправильно, ее не хватает, чтобы нагреть теплоноситель до приемлемой температуры. Если котел с автоматикой не отключается – это верный признак недостаточной мощности.

Правильно оборудованная котельная

Если котел работает, жидкость все же будет прогреваться. Когда радиаторы совершенно холодные – отопительный агрегат сломался или не включается. Современные котлы включаются при соблюдении минимального уровня давления в системе. Котел не включится, если оно меньше. Также современные котлы оснащены системой безопасности. Например, в газовом котле есть датчик, отвечающий за то, чтобы отработанные газы ушли в дымоход. Если дым почему-то уходит не полностью, сработает автоматика, котел отключится и не включится, пока не будут устранены неполадки.

Какие еще есть причины, почему не греет батарея в доме? Давление в системе может быть слишком низким и, как следствие, циркуляция нарушается. Если батареи старые, такая причина маловероятна, ведь двух атмосфер (обычное давление домашней системы) им вполне хватает. А вот некоторые современные батареи требуют более высокого давления. Перед тем как их устанавливать, стоит посмотреть в паспорт, сможет ли система создать требуемое давление.

Немного повысить давление в системе можно, установив циркуляционный насос соответствующей системе производительности.

Поскольку отопление в частных домах часто делают люди малограмотные в этом отношении, возможны ошибки в монтаже, отчего нагрев будет слабым. Считают, что применение однотрубной системы экономит трубы, но из-за особенностей системы прогрев батарей по мере удаления от котла слабеет или они остаются совсем холодными. К тому же удаленные от котла батареи должны иметь больше секций. Сэкономить не получается.

Читайте также:
О том, как переживают зимние морозы американцы

Двухтрубная система

В частном доме намного эффективнее двухтрубная система, но при ее монтаже возможны ошибки, что повлияет на эффективность отопления. К таким ошибкам относятся:

  • неправильная установка запорной арматуры;
  • неверно подключенные батареи;
  • диаметры труб подбирались случайно.

При таких ошибках не обеспечивается эффективная циркуляция, не прогревается батарея отопления. Выход один – пригласить специалиста и устранить ошибки. А чтобы не платить дважды, изначально доверяйте такую ответственную работу проверенному квалифицированному специалисту.

Некоторые советы для умельцев

Многих проблем можно избежать, если предварительно кое-что сделать. Автономное отопление частного дома имеет расширительный бачок для системы. Если к нижней трубе приварить кран и понемногу подавать в него воду, воздушная пробка уйдет через бачок. Через этот же кран заполняют систему водой, тогда пробки не появятся. Единственное, что требуется, это помощник, чтобы следил за уровнем воды в бачке.

Для удаления воздуха из чугунных батарей установите на верхнюю заглушку кран Маевского. Это совсем несложно, нужно лишь летом открутить заглушку, просверлить по центру отверстие нужного диаметра и нарезать резьбу с необходимым шагом. Заглушки сделаны из чугуна, материал легко поддается обработке.

Если батарея без видимых причин плохо отдает тепло, возможно, она касается стены. Чем больше площадь соприкосновения, тем больше тепла уходит бесполезно. Устраните касание, немного отодвинув радиатор. Не закрывайте батареи декоративными решетками, которые уменьшают теплоотдачу. Лучше прикрепите за радиатором отражающий экран из фольгированного материала – теплоотдача повысится.

Система отопления кажется простой только на первый взгляд, на самом деле она имеет свои секреты и хитрости. Все кажется сложным и запутанным для новичка. Но стоит разобраться в вопросе и основные моменты проясняются.

Плохо греют батареи в квартире: неисправности и их устранение

Пожалуй, каждый жилец сталкивался с проблемой, когда в квартире плохо греет батарея. Ситуация экстренная и довольно неприятная, которую необходимо срочно исправлять.

Естественно, серьезные неполадки сможет устранить только специалист, но существуют поломки, с которыми вполне можно справиться самостоятельно. Но для начала нужно выявить причину.

  • 1. Сведения об устройстве
  • 2. Неполадки и способы их устранения
    • 2.1. Воздушная пробка
    • 2.2. Различные засоры
  • 3. Проблемы в частном доме

    Прежде чем разбираться в причинах, почему не греет батарея отопления, нужно сначала понять ее устройство. Отопительная система бывает двух видов, а именно:

    1. 1. Однотрубный вариант чаще всего используется в многоэтажных домах. Теплоноситель имеет только один стояк, собственно от него вода и распределяется по батареям. При этом подача может осуществляться как снизу, так и сверху, этот фактор принципиального значения не имеет. Чтобы горячая жидкость распределялась равномерно, используются специальные байпасы, именно они отвечают за необходимое количество воды, поступающей в радиатор, все остальное уходит в другие отделы.
    2. 2. Двухтрубный вид обладает независимым подключением каждой батареи к двум стоякам. Один служит для подачи горячей жидкости, а другой, наоборот, для отвода охлажденной.

    Именно незнание этих конструктивных особенностей чаще всего приводит к тому, что батарея отопления не работает. Особенно если монтаж производят малоквалифицированные работники.

    Если в квартире не греет радиатор отопления, то причин может быть несколько. Стоит рассмотреть каждую проблему и способ решения более подробно.

    Наличие пробки не дает теплоносителю нормально циркулировать, что мешает батарее хорошо прогреваться, поэтому она и остается холодной. Устранить такую неприятность достаточно легко, нужно просто удалить из системы лишний воздух.

    Сделать это можно при помощи специального крана, который отвечает за спуск воздуха. Его нужно повернуть, используя отвертку или специальный переходник. Если при повороте слышно шипение, то, значит, проблема в этом. Оставляют вентиль на некоторое время в открытом положении, пока из системы не выйдет теплоноситель. Удалять теплоноситель полностью нельзя. В его отсутствие может произойти потеря давления.

    Когда пробка большая, то за один прием удалить ее не получится. Поэтому придется проводить несколько таких мероприятий с промежутком в полчаса или час. Как только радиатор станет горячим, значит, поломка устранена.

    На старых чугунных радиаторах такой вентиль отсутствует, и, казалось бы, простая работа по стравливанию воздуха может превратиться в очень сложную проблему. В этом случае можно действовать двумя способами:

    • удалить воздух с помощью соединительной муфты на подводе теплоносителя в батарее;
    • устранить пробку ослаблением заглушки в радиаторе.

    В обоих вариантах нет необходимости откручивать заглушку полностью, будет вполне достаточно слегка ее повернуть, пока не появится характерное шипение.

    Очень важно разобраться, в какую именно сторону необходимо отворачивать вентиль, так как на нем может быть установлена и левая и правая резьба. Необходимо осмотреть муфту и выступающую часть резьбы. Если на ней имеется буква «Л», значит, крутить нужно вправо. Главное, не делать это слишком сильно, так как трубы старые, ржавые и они легко могут разрушиться. Перед закручиванием нужно обмотать резьбу паклей, чтобы вода не просачивалась через нарушенное соединение.

    Вторая часто встречаемая проблема слабого теплоснабжения — это засорения. Причин появления засоров может быть две:

    • система износилась физически вследствие длительной эксплуатации;
    • в радиатор попала грязная вода, которая не подвергалась фильтрации.

    На внутренних стенках батарей откладываются соли, что и приводит к тому, что они начинают слабо греться. При наличии очень больших отложений теплоноситель просто не может пройти в узкие щели. В этом случае решить проблему можно только заменой батарей, а в совсем запущенных случаях придется менять даже трубы.

    Притом в такой ситуации спуск воды нужного результата не даст, а может даже навредить. Дело в том, что новая вода добавит отложений и засорит систему еще больше.

    Если засор незначительный, то можно просто промыть систему, но лучше делать это при выключенном отоплении. Если требуется провести процедуру в зимнее время, то предварительно отключают радиаторы, поворачивают краны и снимают их. Но нужно быть крайне осторожными, так как в них остается очень горячая вода.

    Прочистка осуществляется под высоким давлением, лучше всего производить эти действия на улице при помощи шланга, который герметично соединен с радиатором. Промывка под краном нужного эффекта не даст, некоторая часть мусора все равно останется.

    Причин, почему плохо греет батарея в частном доме, гораздо больше. И помимо вышеперечисленных неполадок, встречаются и другие. Так как в основном жилища имеют автономное отопление, то часто проблема возникает именно из-за котла. Это может быть неправильно подобранная мощность, когда ее недостаточно для нагрева теплоносителя. Если прибор с автоматикой, и он не отключается, то это признак того, что недостаточно мощности.

    Рабочий котел, так или иначе, будет прогревать жидкость, а вот когда алюминиевые радиаторы холодные, то это свидетельствует о неисправности отопительной установки. Современные котлы устроены таким образом, что они включаются даже при минимальном давлении в системе. Кроме этого, они имеют систему безопасности, и при любой неисправности или ошибке они просто не включатся, пока неполадка не будет устранена.

    Существует и ряд других причин, например, слишком низкое давление, вследствие чего нарушается циркуляция. Хотя такая неисправность редко встречается в старых батареях, обычно двух атмосфер им вполне хватает. А вот новые модели нуждаются в довольно высоком показателе, поэтому перед установкой необходимо ознакомиться с техническими характеристиками.

    Чтобы система стала работать лучше, необходимо повысить давление, сделать это можно при помощи циркуляционного насоса. Но приобретать прибор нужно только от соответствующего системе производителя. В обратном случае радиаторы могут вовсе перестать топить.

    Проблема может крыться в неправильно произведенных монтажных работах, особенно если подключение проводилось самостоятельно. Многие считают, что применения однотрубной схемы вполне достаточно. На самом деле это не так. Дело в том, что у такой системы есть свои особенности прогрева: чем дальше радиатор от котла, тех хуже он прогревается, то есть последний будет совсем холодным.

    К тому же удаленные элементы требуется устанавливать с большим количеством секций, чтобы они смогли отопить комнату.

    Именно поэтому в загородном доме рекомендовано устанавливать двухтрубный вариант, но делать это правильно. Чаще всего при монтаже допускаются следующие ошибки:

    • некорректно произведена установка запорной арматуры;
    • радиаторы подключены неправильно;
    • диаметры труб имеют несоответствия.

    Такая установка не позволяет системе циркулировать в нормальном режиме, поэтому радиаторы прогреваются не в полную силу. Исправить ситуацию сможет только специалист, поэтому не имея опыта, не стоит проводить сборку и подключение самостоятельно, иначе придется платить дважды.

    Многих неприятностей можно избежать, если еще на начальном этапе произвести нужные действия. Дело в том, что автономное отопления оснащается специальным расширительным баком для системы. Если к трубке, которая расположена в нижней части, приварить кран и уже через него подавать воду, то воздушная пробка будет выходить через этот бачок. Но при проведении таких мероприятий необходимо следить за уровнем воды в баке.

    Чтобы удалить пробку в чугунных радиаторах, нужно установить на верхней заглушке кран Маевского. Для этого в летний сезон нужно открутить муфту и просверлить в центре при помощи дрели отверстие необходимого диаметра. Затем нужно нарезать резьбу, сделав на ней нужный шаг. Так как такие заглушки изготавливаются из чугуна, то обработать их труда не составит.

    В случае когда на радиаторе нет видимых поломок, а система прогревается плохо, то причина может крыться в неправильном положении. Возможно, она слишком близко расположена к стене. Чем больше площадь соприкосновения, тем меньше тепла она будет отдавать. Чтобы устранить проблему, нужно просто подальше отодвинуть батарею. Не стоит в декоративных целях вешать решетки, так как они также снижают теплоотдачу, а вот фольга, размещенная сзади устройства, наоборот, усиливает действие.

    Причины и способы устранения плохого нагрева радиаторов и батарей отопления, а также всей системы

    Изменение температурного режима работы отопления может быть вызвано рядом внутренних причин. Многие из них негативно сказываются на КПД системы, увеличивая затраты энергоносителя. В таких случаях возникает резонный вопрос — почему не греет отопление: радиаторы, батареи, насосы, системы? На первом этапе необходимо найти причины возникновения проблемы.

    1. Общие проблемы с отоплением
    2. Не нагревается радиатор отопления
    3. Воздушные пробки в отоплении
    4. Неправильный монтаж и известковый налет в трубах
    5. Котел не нагревает батареи
    6. Трубопроводы: причины низкого нагрева
    7. Естественная циркуляция
    8. Принудительная циркуляция теплоносителя

    Общие проблемы с отоплением

    Общая схема работы автономного отопления

    Принцип работы любой отопительной системы заключается в эффективной передаче тепловой энергии от энергоносителя (газ, твердое топливо, дизель и т.д.) воде в трубах. Задача же приборов отопления (радиаторов, батарей, труб) – передать полученное тепло в помещение.

    И если батарея отопления не греет – причины этого могут крыться как в самой конструкции, так и в параметрах системы в целом. Рассмотрим общие причины снижения эффективности работы системы отопления:

    • Низкая эффективность функционирования теплообменника котла. Вода не нагревается до нужной температуры;
    • Конкретная батарея отопления плохо греет. Возможные причины – неправильный монтаж, образование воздушных пробок;
    • Изменение технических характеристик системы – увеличение гидродинамического сопротивления на отдельных участках магистрали, уменьшение проходного диаметра труб и т.д. Чаще всего следствие подобных явлений – сильно греется циркуляционный насос отопления.

    В некоторых случаях возникает не одна, а несколько перечисленных проблем. Зачастую основная является первопричиной появления следующих. Так, образование воздушной пробки сказывается на увеличении гидродинамического сопротивления, и как следствие – возникает повышенная нагрузка на циркуляционный насос.

    На батарею отопления с плохим нагревом нельзя устанавливать декоративные решетки или закрывать ее панелью. Таким образом и так небольшая эффективность ее работы будет искусственно снижена.

    Не нагревается радиатор отопления

    Конструкция радиатора отопления

    Чаще всего проблемы с нормальной теплоотдачей возникают в радиаторах отопления. Это объясняется их специфической конструкцией – теплоноситель движется не по одной трубе, как в транспортировочной магистрали, а распределяется по нескольким.

    В каких случаях не греет радиатор отопления? Существует несколько факторов, напрямую влияющих на правильность работы батареи.

    Воздушные пробки в отоплении

    Установленный кран Маевского

    Существует несколько причин появления воздушных пробок в системе отопления – превышение температурного режима, испарение воды и т.д. Важно, что следствием этого является появление мест в магистрали, не заполненных теплоносителем. Чаще всего это радиаторы отопления. Для их устранения необходим монтаж крана Маевского – воздушного клапана, выпускающего избыток воздуха из прибора.

    Как определить, почему плохо греет радиатор отопления? Самый простой метод – перепад температур на поверхности. В месте образования воздушной пробки она будет значительно ниже, тем самым препятствуя нормальному прохождению теплоносителя. Для ее устранения необходимо выполнить следующие действия:

    • С помощью отвертки или поворотного рычага открыт кран Маевского;
    • Добавлять в систему воду, пока вместе с воздухом из крана не начнет вытекать теплоноситель;
    • Перекрыть подачу воды.

    После запуска системы отопления поверхность радиатора должна нагревать равномерно. В противном случае повторить процедуру.

    Для нормального нагрева радиатора отопления нужно установить регулировочный термостат. В зависимости от установленного температурного режима он будет автоматически регулировать объем теплоносителя.

    Неправильный монтаж и известковый налет в трубах

    От корректной установки радиатора зависит эффективность его работы. Он не должен быть наклонен относительно плоскости пола и стены. Если это условие не было выполнено, то неизбежно возникнет вопрос — почему не греет батарея отопления.

    Для проверки правильности установки радиатора можно взять стандартный строительный уровень. Если верхняя плоскость батареи имеет отклонения – следует выполнить повторный монтаж. Лучше всего использовать для этого новые усиленные крепления.

    Если же и после этого вопрос, почему не греет радиатор отопления остается нерешенным, рекомендуется сделать промывку системы отопления. Эта проблема актуальна для старых труб и радиаторов, изготовленных из стали и чугуна. Со временем на внутренней поверхности скапливается известковый слой, препятствующий нормальному протеканию теплоносителя. Выполнить процедуру промывки можно несколькими способами:

    • Гидравлическая. В контур системы подключается специальный насос, который создает большой напор воды. Под действием этой силы накипь разбивается на небольшие фракции и задерживается в фильтре насоса;
    • Химическая. Специальные добавки воздействуют на известковый налет, который теряет однородность и отслаивается от внутренней поверхности. В дальнейшем выполняется гидравлическая промывка для удаления остатков мусора.

    Специалисты рекомендуют применять комплексный метод для решения проблемы, при которой батарея отопления не нагревается. После проверки правильности монтажа выполняется промывка системы, а затем правильное заполнение с открытым краном Маевского.

    Если двухтрубная отопительная система не греет из-за засора труб – нужно внимательно выбирать технологию очистки. Для трубопроводов из полипропилена химическую прочистку делать нельзя.

    Котел не нагревает батареи

    Теплообменник котла до и после очистки

    Нередко двухтрубная система отопления не греет по причине невысокого показателя теплопередачи обменного контура котла. Это приводит к снижению температурного режима и как следствие – потере эффективности работы всей системы. Не каждая модель котла предусматривает простой способ демонтажа теплообменника. Если плохо греет отопление из-за появления налета на внутренних элементах котла – можно выполнить промывку без этой процедуры. Для этого понадобится насос с системой фильтрации. Порядок выполнения очистки следующий:

    • Отключение котла от общей системы отопления;
    • Подсоединение на входной и выходной патрубок шлангов насоса;
    • Заправка специальной очищающей жидкости в теплообменник котла;
    • С помощью центробежного насоса увеличивается скорость прохождения жидкости через котел.

    После этого батареи отопления плохо греть не должны. Особое внимание следует уделить промывающей жидкости. Она не должна навредить металлическим элементам котла и системы. Поэтому по окончании процедуры следует промыть дистиллированной водой всю систему.

    Во избежание появления накипи перед заливкой воды в систему отопления нужно уменьшить ее показатель жесткости. Использование проточной воды не рекомендуется, так как в ней содержится большое количество бикарбонатов кальция и магния. Именно они являются основным источником появления известкового налета не только в теплообменнике котла, но и в трубах и радиаторах.

    Оптимальный способ очистки теплообменника — его демонтаж. Так можно не только удалить весь объем накипи, но и убедиться в его целостности. После этой процедуры система отопления не должна плохо греть.

    Трубопроводы: причины низкого нагрева

    Определение воздушных пробок в батареи с помощью тепловизора

    Сбои в режиме нагрева свойственны двухтрубной системе отопления. Не греет в этом случае подводящая магистраль, распределяющая теплоноситель по радиаторам. Выявление «проблемной» зоны можно сделать с помощью измерения температуры на поверхности труб или тепловизора.

    Естественная циркуляция

    Уклон трубы для отопления с естественной циркуляцией

    С чем могут быть связаны подобные проблемы? Если отопление плохо греет — возможно несоблюдение уклона магистрали. Это относится только к системам с естественной циркуляцией. Согласно нормативам уклон труб должен составлять 10 мм на 1 м.п. Помимо этого учитывается направление – от разгонного стояка к радиаторам. Для обратной трубы уклон должен быть к котлу.

    На первом этапе необходимо с помощью строительного уровня измерить этот показатель. Если он соответствует норме, но радиатор отопления не греет, – есть вероятность образования воздушных пробок. В этом случае рекомендуется комплексный подход, который включает в себя следующие этапы:

    • Измерение угла наклона. В случае надобности – его изменение до требуемого показателя;
    • Промывка труб для удаления известкового налета;
    • Заполнение системы теплоносителем с открытыми кранами Маевского на радиаторах.

    Такая методика позволит устранить низкий показатель теплоотдачи системы отопления.

    Для улучшения циркуляции в открытые системы можно установить циркуляционный насос. Если же он будет перегреваться — нужно монтировать дополнительный. Это часто необходимо для разветвленных отопительных систем.

    Принудительная циркуляция теплоносителя

    Принцип действия воздухоотводчика

    Для системы с принудительным движением воды в трубах образование воздушных пробок можно избежать, с помощью установленного в верхней части системы воздухоотводчика. Отчасти он выполняет функции открытого расширительного бака, но при этом не снижает давление в трубах до критического уровня. Его отсутствие является косвенной причиной плохого нагрева радиатора отопления.

    Специфика закрытых систем отопления заключается в необязательном соблюдении уровня установки труб. Однако при превышении критического уровня нагрева теплоносителя происходит выделение пара, который является основной причиной появления воздушных пробок. Так как воздух имеет меньшую плотность, чем вода – он будет концентрироваться в верхней области участков трубопровода. Если плохо греют радиаторы отопления в закрытой системе – причина может заключаться в снижении объема теплоносителя в трубах из-за сопротивления воздуха.

    Что необходимо сделать в этом случае? Прежде всего – проверить работоспособность воздухоотводчиков. При долгом простое клапан может покрыться известковым налетом, что делает невозможным его открытие под давлением воздуха.

    Кроме этого фактора нужно учитывать превышение гидравлического сопротивления в системе. Вот почему не греет батарея в отоплении при неправильном первоначальном расчете. Поэтому прежде чем приступать к установке новой системы или модернизации старой – следует выполнить расчетную часть эксплуатационных и технических параметров:

    • Подбор труб соответствующего диаметра – чем он больше, тем меньше гидродинамическое сопротивление. Однако при этом увеличивается объем воды;
    • Вероятность того, что двухтрубная система отопления не будет греть значительно меньше, чем у однотрубной. Поэтому предпочтительно устанавливать радиаторы с параллельным подключением;
    • Нагрев циркуляционного насоса отопления происходит из-за неправильно подобранной мощности. Она же напрямую зависит от расчетных гидродинамических показателей.

    По каким причинам может не нагреваться батарея отопления? Это может быть связано с неправильно подобранной моделью радиатора. Каждый из них имеет определенный показатель теплоотдачи в зависимости от теплового режима работы системы. Эти данные указываются в паспорте прибора. Если неправильно выбрать модель – то даже при идеальной работе системы отопления радиатор просто не будет нагреваться до требуемой температуры.

    В видеоматериале показаны основные причины плохого нагрева радиатора для однотрубной системы отопления:

    Перевести на солнечную энергию дом — на личном опыте

    Сергей Рыжиков рассказал в блоге о том, как перевел свой дом на потребление солнечной энергии: выбор оборудования, эффективность этой системы и подключение к городской сети как к неограниченному аккумулятору.

    Сегодня исполняется год, как я сделал солнечную электростанцию, научился обеспечивать себя электричеством и даже отдавать излишки в городскую электросеть и официально крутить счетчик в обратную сторону. Говорят, у меня первый в стране частный дом, который делится излишками энергии с соседями.

    18 фото и много букв via vc.ru

    Автор публикации

    Леонид Максимов

    Однажды в Facebook в комментариях под интересной статьей Александра Чачавы про его опыт работы с Tesla я упомянул про солнечную электростанцию. Оказалось, что это многим интересно, и меня попросили поделиться опытом — делюсь. Мне казалось, что писать будет особенно не о чем и статья получится короткой. Но получилось много букв, картинок и ссылок.

    Идея жить на солнечной энергии

    Я решил сделать в своем доме солнечную электростанцию и научиться полностью обеспечивать себя электричеством. Плана сэкономить или заработать, как это делают немцы, я себе не ставил. Мне просто понравилась идея жить на солнечной энергии, ну и проект показался интересным.

    Мой дом находится в городе. Перебоев с электричеством не случается, ну или крайне редко, необходимости в резервном генераторе нет. Но ведь интересно попробовать: может ли дом жить полностью автономно на солнечной энергии в нашей полосе. Начал собирать информацию. Моя жена, кажется, еще не верила до конца, что я это все серьезно затеваю. Да и я не знал, что из этого может получиться толк.

    Первые поиски не дали много сведений. Живых проектов в России очень мало. Кто-то что-то делает, но это только дополнительные источники питания и на нескольких панелях. Солнечные электростанции создают в основном компании или госструктуры — частных проектов в стране очень мало. Много проектов в Украине, но это гораздо южнее и солнечнее.

    В поездках по Германии я видел много домов с солнечными панелями на крышах. Сестра моей жены, Юлия, замужем за немцем и живет в Берлине. Ее муж, Кристоф, — предприниматель, он занимается альтернативной энергетикой. У Кристофа я подробно разузнал, как это все устроено в Германии. Оказалось, что немцы чаще всего делают солнечные электростанции для выгоды: они просто зарабатывают на государстве, которое платит особый высокий тариф за выработку солнечного электричества. В банках даже были кредитные линии под такие проекты. Я сделал для себя главный вывод: на широте Калининграда можно обеспечивать себя солнечной энергией — и начал подбирать оборудование.

    Выбор оборудования

    Для реализации проекта в Калининграде я выбрал компанию «АЭС-Центр». Их сайт оказался на «Битриксе»: я давно уже заметил, что это хороший индикатор адекватности руководства. Кстати, совершенно не ошибся: ребята оказались профессиональными и честными, а, когда евро в конце прошлого года пошел в гору, они сами предложили зафиксировать низкий курс для завершения проекта. Спасибо Виктору Фетисову, директору компании «АЭС-Центр» за терпение в работе со мной.

    Обычная схема подключения солнечной электростанции выглядит так: пластина + инвертор = электричество.

    Но эта схема не обеспечивает полной автономии: в ночное время электричество потребляется из городской сети, а днем избыток электричества скидывается в городскую сеть. Нет аккумуляторов для бесперебойной работы только на солнечной энергии. Но я еще вернусь в своем рассказе к этой схеме как к одной из самых выгодных и простых в реализации.

    Так как я хотел перевести дом полностью на солнечную энергию, к схеме добавились аккумуляторы и контроллер.

    В процессе проектирования обсуждалось много разных схем включения электростанции в домашнюю сеть. Некоторых из них мне показались совсем неудобными для урбанизированного человека. Я выбирал вариант подключения, который был бы совершенно незаметен для семьи, чтобы они вообще не должны были задумываться, откуда в розетке электричество и есть ли сейчас солнце.

    Солнечные батареи подключаются к инвертору, который из постоянного напряжения делает переменные 220В. Инвертор подключается к контроллеру, который выполняет ключевую распределительную роль: к нему подключается инвертор от солнечных батарей, аккумуляторные батареи и городской электрический кабель. И именно контроллер выдает в дом 220В для использования. В общем, подключаем все запчасти к контроллеру, и пусть уже он думает, где брать электричество.

    Логика работы такая. Если есть достаточное солнце, контроллер использует солнце; если солнца нет или недостаточно, он добирает электричество из аккумуляторов; если они пусты — подключает городской источник электричества. Если солнца больше, чем нужно дому, контроллер направляет электричество на зарядку аккумуляторов. Если они заряжены, он направляет излишки электричества в город. В город? Этот вопрос я на тот момент отложил. Фетисов сказал мне: «Подключиться к городу нереально, так что будем выкидывать излишки, не парься».

    Так получилась схема подключения. Дальше нужно было определиться с мощностью солнечной электростанции и числом солнечных батареи. Сколько брать пластин?

    Дом в среднем потребляет 8–10 кВт⋅ч в день — эта цифра вычислена делением среднего счета за несколько месяцев на 30. Не очень точный метод, но его достаточно, чтобы прикинуть, что столько энергии солнечная батарея должна бы выдавать за светлое время суток.

    Фетисов предложил мне ограничиться 10 пластинами из расчета, что мы будем выдавать 2,5 кВт⋅ч в солнечный день и заряжаться 4–5 часов. Но тут я засомневался. Очевидно, что выработка солнечной энергии напрямую зависит от погоды, от угла наклона пластин к солнцу и от КПД самих батарей. Поворачивать пластины я не смогу, просто прикреплю их к крыше на южном склоне. Солнце в течение года тоже гуляет по высоте и наклону, погода частенько пасмурная… В общем, я не придумал ничего лучше, как увеличить число пластин до 20 с запасом в два раза от расчетного. И это, как показал потом опыт, было правильное решение.

    Итак, я выбрал 20 пластин. Разместить получилось 8 на южном склоне, 2 на юго-востоке и 10 на восточном склоне. Можно было на западном, но я выбрал восток — решил, что утром больше солнца и если аккумуляторы за ночь разрядились, то зарядка начнется быстрее.

    Потом начал выбирать производителя солнечных батарей. Солнечные батареи бывают двух типов: монокристаллы и поликристаллы. Они также отличаются качеством произодства. Лучший — Grade A. Монокристаллы лучше работают в пасмурную погоду. Лидер рынка — китайская компания Yingli, они производят больше всего пластин в мире.

    Я честно пытался найти российские пластины: я же видел, что на космических станциях стоят наши, производства НПП «Квант». Но их сайт на тот момент был ужасным, информацию я получить не смог, найти поставщиков — тоже. Также я отверг все польские и немецкие варианты: они оказались из китайского кремния или недостаточно эффективными. А кроме кремния, в пластинах ничего умного нет.

    После изучения кучи обзоров я выбрал Yingli YL270C-30b монокристалы Grade A с КПД 17,2%. Увеличение числа пластин привело к увеличению инвертора. С ним я долго не выбирал — по совету Кристофа и Виктора я выбрал лидера немецкого рынка, компанию SMA и устройство Sunny Boy 5000TL.

    Следующий шаг — контроллер, штука большая и сложная. По сути, все программирование логики работы дома на солнце находится в ней. С производителем я уже определился — это компания SMA. Первым вариантом, который мне предложили, была модель SUNNY ISLAND 6.0H. 6 кВт – это пиковая нагрузка, которую устройство может держать, кажется, минут 30. А нормальная нагрузка для нее — порядка 4 кВт. Как понять, достаточно этого для дома или нет?

    Принялся считать пиковое потребление в доме. Я давно перевел весь дом на диодные лампы, то есть освещение потребляет очень мало: если везде включить свет — будет максимум 500 Вт. Далее большие потребители: электрический чайник 2 кВт, электроплита 2 кВт, стиральная машина и сушилка — по 1 кВт.

    Я хотел, чтобы семья не задумывалась о потреблении и жила как на городоском электичестве. Как ни крути, получалось, что утром мы можем поставить новую стирку, то, что достигалось за ночь, закинуть в сушилку, и одновременно готовить завтрак и кипятить воду для кофе. Это не очень частый сценарий, но вполне возможный. Будет не очень хорошо, если дом в этот момент аварийно отключится. Я опять подстраховался и взял модель SUNNY ISLAND 8.0H на 8 кВт в пике и 6 кВт в рабочем режиме. Пока еще дом ни разу не выключился аварийно из-за пикового потребления.

    С аккумуляторами была та еще головоломка. Я опять изучил несколько обзоров, графики живучести и списки производителей. Помогли мои консультанты — выбрал гелевые аккумуляторы фирмы MHB модель MNG200-12.

    Мое потребление — 8–10 кВт⋅ч в день. Я решил взять аккумуляторы из расчета на два дня без выработки солнца. Признаться, я тогда упустил один очень важный показатель. Долговечность аккумулятора напрямую зависит от глубины разрядки: если разряжать его не более чем на 30%, то проживут они 1800 циклов, это примерно пять лет. Но если разряжать на 100%, они проживут всего 350 циклов — считай, год, — а это совсем немного.

    Подключил восемь аккумуляторов, и они накапливают примерно 20 кВт⋅ч. Уже после запуска всего проекта у меня перегорел предохранитель перед домом, и мы узнали об этом только через два дня. Так что расчет на автономное питание на два дня оправдался. А вот накопление при 30% зарядке обеспечивает всего 5–6 кВт⋅ч, что потом явно окажется недостаточным для эффективной работы в полностью автономном режиме.

    Нужно отметить, что проблема накопления солнечной энергии вообще сейчас одна из самых сложных и дорогих в решении. Многие слышали про проект Элона Маска с аккумуляторами — если его аккумуляторы реально будут жить десять лет при 100% перезарядке, это будет прекрасно, мне бы хватило трех таких. Но я пока не нашел никакой информации про число циклов.

    В августе схема подключения была готова и оборудование выбрано. К сборке станции «АЭС-Центр» приступил в октябре, работа шла почти месяц. Приехали ребята с альпинистским оборудованием, забрались на крышу и начали монтаж.

    Внутри дома я выделил место на чердаке. Там установили контроллер, инвертор и противопожарный шкаф для аккумуляторов. Я попросил поставить автоматическую систему пожаротушения и систему принудительной вентиляции с датчиком. Также у меня есть рубильник, с которым я могу махом переключить весь дом на городскую линию и полностью обесточить солнечную электростанцию. Подстраховался.

    Когда все было смонтировано, в один день мы переключили рубильник, и дом отключился от городской электросети и подключился к солнечной электрической станции.

    Первый опыт

    Итак, большую часть года я обеспечиваю себя солнечной энергией с большим запасом. Вот май 2015 года. За месяц я выработал 745 кВт⋅ч, потребил 300 кВт⋅ч. Больше 0,5 мегаватта в плюс.

    Как видите, в солнечный день станция выдает примерно 30–35 кВт⋅ч, а потребляю я не больше 10 кВт⋅ч. То есть летом я вырабатываю 300% необходимой мне энергии. Так выглядит график солнечного дня 6 июня 2015 года. Станция начинает давать энергию уже в семь утра. Пиковая выработка 4+ кВт⋅ч, и до 19 часов вечера работает генерация.

    Я пишу эту статью 29 ноября. Сегодня был пасмурный день, низкие облака. Выработка составила всего 4 кВт⋅ч — примерно 50% от необходимой мне энергии.

    А вот весь ноябрь этого года. Я смог себя обеспечить себя солнечной энергией всего на 40%.

    Весь год выглядит вот так. В данных за август ошибка: у меня барахлил интернет, пока мы были в отпуске, и данные не засчитались. Но выработка была лучше июля.

    Как видите, я обеспечиваю себя на 100% весь год, кроме четырех месяцев — с ноября по февраль. В это время обеспечение составляет 30–70%.

    Подключение к городской электросети

    Основная выработка солнечной энергии приходится на середину дня, а основное потребление — на утро и вечер. В течение года максимум генерации приходится на лето, зимой генерация минимальная.

    Накапливать солнечную энергию сложно и дорого. Даже в течение дня излишек энергии некуда накапливать — не говорю уже о том, чтобы накопить на зиму.

    Первоначально мы запрограммировали контроллер таким образом, чтобы он для дома брал энергию или от солнца или от аккумуляторов при разрядке не больше 40%. В зимний период такой режим работы оказался крайне неэффективным, да и летом он был не самым оптимальным. Я терял электроэнергию днем, гонял батареи лишними циклами.

    И в этот момент я как-то физически осознал, насколько важна проблема с накоплением энергии. Но пока она не была решена, я решил, что нужно попробовать подключиться к городской сети и научиться крутить счетчик в обе стороны.

    Подключение к городской сети позволяет использовать город как неограниченный аккумулятор. Любой излишек в любое время скидывать в него и при необходимости забирать обратно.

    Я опубликовал в своем Facebook просьбу познакомить меня с кем-нибудь из электросвязи — и, о чудо, мне дали директора филиала «Янтарьэнерго», Леонида Александровича Михайлова. Я пошел к нему с просьбой подключить мою солнечную электростанцию к городской электросети и разрешить крутить счетчик в обратном направлении, когда я отдаю энергию городу.

    Леонид Александрович — прекрасный человек и профессионал. Внимательно выслушал меня, понял, с чем я пришел, удивился проекту — и захотел мне помочь! Причем сразу объяснил, что будет сложно, структура большая, задача новая, но стоит попробовать. Я написал заявление на подключение и стал ждать. Леонид Александрович неоднократно звонил мне, объяснял, на какой стадии сейчас находится вопрос. Такое внимательное отношение редко встретишь со стороны коммерческих структур, а для большой госкорпорации это вообще удивительно. Когда дело дошло до энергосбыта, я познакомился с еще одним прекрасным человеком, Алексеем Капыловым. Он тоже приложил все усилия, чтобы подключить меня к городской сети.

    Всего пять месяцев ушло на выработку технических условий по подключению, и вот в августе на пороге моего дома появилась целая бригада «Янтарьэнерго». Они сняли старый счетчик и подключили крутиться в обе стороны новый, сертифицированный.

    Как выяснилось, переток в городскую сеть выполняется очень просто. В городской сети напряжение 220В. Мой контроллер отдает излишки энергии в сеть с напряжением больше 220В (237В, кажется), и электрончики перетекают из моей сети в городскую, как вода в сообщающихся сосудах. Оказалось, что не нужно менять оборудование на подстанциях или вообще в городской сети (город может принимать энергию!). Просто поставили новый счетчик и размыкатель — защита на случай аварийных отключений.

    Представьте себе сцену: восемь мужиков стоят перед домом и ждут — и принимаются громко радоваться и шуметь, когда после подключения к городу счетчик закрутился в обратную сторону.

    Мне сказали, что у меня первый дом в России, который официально скидывает электроэнергию в городские сети. Странно, конечно, если это так — но и радостно. Надеюсь, что мои технические условия пригодятся и позволят подключать других значительно проще.

    Пока еще нет утвержденных тарифов на покупку энергии у таких, как я, к тому же все это монополии, поэтому утверждать тарифы сложно. Но я и не жду, что мне кто-то заплатит. Самое главное для меня случилось: счетчик крутится в обе стороны, и город стал моим вторым аккумулятором. Еще раз хочу сказать спасибо Михайлову Леониду Александровичу. Прямо вот очень круто, что вы есть.

    Из текущих проблем с подключеним к городской сети пока остался только курьезный момент: я не могу занести в учетную систему энергосбыта актуальное значение счетчика. В акте на подключение в конце августа у меня было указано число 14011. Через пару месяцев уже было 13350, что говорит о том, что я генерировал энергии больше, чем потреблял. Но учетный софт не понимает уменьшения, и мне приходится пока вводить первоначальное значение счетчика, чтобы получать нулевые счета за электричество. Ну и счета еще не приходят с нулем, какая-то автоматика выставляет про запас. Тут есть, над чем работать.

    Солнце без гарантий: Насколько выгодно переводить дома на альтернативную энергию?

    Экологичность ведения хозяйства – тренд последних лет. Есть немало компаний, которые предлагают услуги по установке и обслуживанию солнечных модулей. Насколько эффективным может быть перевод дома на альтернативную энергию в России и можно ли это сделать, телеканалу «МИР 24» рассказал ведущий аналитик Фонда национальной энергетической безопасности, эксперт Финансового университета при Правительстве России Игорь Юшков.

    – Насколько эффективно использовать солнечные батареи в средних российских широтах?

    Игорь Юшков: Основной вопрос – экономический, насколько рентабельно у нас развивать возобновляемую энергетику: и солнечные панели, и ветряки. Все упирается в деньги, пока что мы видим такую практику: если у кого-то свой частный дом, если есть доступ к традиционной энергетике, то есть они могут получать электроэнергию из общей сети, тогда солнечные панели неконкурентоспособны, потому что стоимость электроэнергии из общей сети невелика, а затраты на установку комплекта оборудования для получения энергии от солнечных панелей довольно велики.

    Помимо солнечных панелей нужно купить систему накопления, аккумуляторы, и только вместе это будет работать. У нас не так много солнечных дней, но это не основная проблема. Современные солнечные панели работают, когда солнце заходит за тучу. Основная проблема – это себестоимость самого оборудования и соотношение с возможностью получать электроэнергию из общей сети. Там, где нет такой возможности, где изолированный объект, и нужно строить эту сеть, когда затраты на строительство будут большими, там есть смысл развивать автономную электроэнергетику, в том числе за счет солнечных панелей. Этот вариант можно рассматривать.

    Стоит отметить, что солнечные панели в России производятся в небольшом количестве, многие из них иностранные. Производство солнечных панелей – не самое экологически чистое, и аккумуляторов, и накопителей, поэтому люди, которые говорят, что возобновляемая энергетика спасет весь мир, он станет чистым и зеленым, им надо задуматься, из чего делают солнечные панели и аккумуляторы к ним. Это довольно грязное производство. Там, где добывают тот же самый литий, это места, где нам не хотелось бы, наверное, жить.

    – В южных регионах были успешные проекты умного дома, где он сам себя обеспечивает светом и теплом. Насколько это может быть затратно? Какие именно факторы на это влияют?

    Игорь Юшков: Первый фактор, который влияет, насколько дорог будет пассивный дом, который сам себя обеспечивает, это температура окружающей среды. На юге построить такие пассивные дома проще, там должна быть система утепления, современные строительные материалы позволяют строить пассивные дома в России, особенно, если мы говорим про южные регионы – Краснодарский край, Крым. Можно это делать, но эти стройматериалы не такие массовые, как обычные, либо нужно делать очень толстую стену из того же пенобетона.

    И второй элемент – автономная система ввода нагрева и получения электроэнергии. Здесь можно использовать небольшие ветряки либо солнечные панели – они удобнее и проще в бытовом исполнении. Есть также всевозможные тепловые насосы, которые используют геотермальное тепло, но здесь вопрос в том, что это все нужно обслуживать. Основной статьей расходов в данной системе при получении солнечной энергии будет система аккумуляторов. Саму панель поставил, она работает, но аккумуляторы дорогие и постепенно теряют свою емкость.

    Мы даже на смартфонах можем это заметить, что постепенно он быстрее разряжается, так же происходит с аккумуляторами. Пока значимого прогресса глобального в мировой технике не происходит, иначе, может быть, возобновляемая энергетика победил бы, и везде была бы одна зеленая энергетика. Затраты, в основном, идут на систему накопления энергии, и это основная проблема.

    – Если умный дом отапливать не на юге, а в средней полосе, цена будет намного выше?

    Игорь Юшков: Да, это довольно затратно. Вам потребуется довольно большая площадь, чтобы разместить больше солнечных панелей, потому что мы говорим, скорее, про пассивный дом, к которому не подходят другие коммуникации – нет электроэнергии из сети, нет газопровода, и там единственная возможность получить электроэнергию – это солнечные панели. Но, чтобы отапливаться постоянно солнечными панелями, не использовать, например, дровяную печь, это будет сложно. Основные затраты пойдут именно на отопление – нужно будет очень сильно утеплиться, подумать насчет размера окон – через них основные энергопотери проходят, поэтому я бы не рискнул делать такой пассивный дом. Хотя бы дровяную печь для отопления всегда нужно устанавливать, потому что солнце не гарантирует вам полное энергообеспечение.

    – Насколько сложны такие системы в эксплуатации?

    Игорь Юшков: Монтаж должны выполнить профессионалы, кто понимают, как это должно работать, по сути, это отдельная система проводки, вам в дом надо завести питание от самих панелей, электроэнергия будет сначала приходить в эти аккумуляторы, а потом расходиться по общедомовой проводке, по розеткам, выключателям и так далее. Здесь немножко сложнее, чем бытовая починка выключателя.

    Обслуживать современные системы довольно легко. Не надо туда лезть, датчики вам все подскажут, что сломалось, достаточно или недостаточно энергии, насколько хватит запасов в аккумуляторе, и когда нужно будет выключить прибор.

    – В 2020 году был принят закон о микрогенерации, благодаря которому люди могли продавать энергетические излишки. Насколько этот закон оказался рабочим?

    Игорь Юшков: Пока мы видим создание нормативной базы в этом направлении. Действительно, представляется, что это будет определенным подспорьем для развития возобновляемой энергетики, потому что если ты сам потребляешь от солнечных панелей, например, энергию, то они, допустим, у тебя не окупаются, по сравнению с тем, если бы ты брал энергию из общей сети, сколько бы ты платил. Предполагается, чтобы убрать эти убытки, человеку можно дать возможность зарабатывать, то есть продавать лишнюю энергию в сеть, но пока это разрешили на уровне законодательства. Нужны дальше подзаконные акты, всевозможные инструкции, как это на практике реализовать.

    Поэтому на практике сейчас никто из физических лиц обратно в сеть энергию не продает, еще нужна соответствующая нормативная база, как это все будет происходить, кто должен подключить тебя, какие деньги тебе за это надо платить, как устанавливается этот тариф, который тебе будут платить, какие приборы. Самое важное, что, может, растянет эту возможность на долгие годы, отдалит ее, это то, что подобная система завязана на установку по всей стране так называемых умных сетей – Smart grid, которые, получая из множества источников, а не с одной электростанции электроэнергию, будут сами автоматически распределять ее среди тех потребителей, которым она нужна.

    По сути, необходимо обновить полностью все сетевое хозяйство, перевести с обычных электросетей на Smart grid – это может занять и пять, и десять лет.

    – Видите будущее у таких независимых энергосистем в средней полосе России? Что нужно сделать, чтобы солнце на нас работало активнее?

    Игорь Юшков: Для России вопрос заключается в том, а нужно ли в принципе это делать. Ведь возобновляемая энергетика традиционно развивалась там, где не было альтернативы, где не было других источников энергии, в частности, углеводородов, газа. Россия – мировой лидер по запасам газа, поэтому здесь большой вопрос, нужно ли это нам.

    В Европе, если у них было столько запасов газа, как в России, я очень сомневаюсь, что они бы сейчас рассказывали нам про глобальное потепление, необходимость ВИЭ и так далее. Поэтому вопрос – зачем, а дальше уже можно говорить о том, как это мы будем развивать.

    Я думаю, в России будет развиваться ветровая энергетика и солнечная. Может, отдельно для производства водорода, потому что с помощью возобновляемой энергетики можно производить так называемый зеленый водород и продавать его в Европу. Может быть, это будет экспортоориентированная отрасль, но пока она экономически неконкурентоспособна по сравнению с традиционной энергетикой – газовой, атомом.

    Солнечное отопление частного дома: варианты и схемы устройства

    Большую часть года мы вынуждены тратить деньги на отопление своих домов. В такой ситуации любая помощь будет не лишней. Энергия солнца подходит для этих целей как нельзя лучше: абсолютно экологически чистая и бесплатная. Современные технологии позволяют осуществлять солнечное отопление частного дома не только в южных районах, но и в условиях средней полосы.

    Что могут предложить современные технологии

    В среднем 1 м2 поверхности земли получает 161 Вт солнечной энергии в час. Разумеется, на экваторе этот показатель будет во много раз выше чем в Заполярье. Кроме того, плотность солнечного излучения зависит от времени года. В Московской области интенсивность солнечного излучения в декабре-январе отличается от мая-июля более чем в пять раз. Однако современные системы настолько эффективны, что способны работать практически всюду на земле.

    Задача использования энергии солнечной радиации с максимальным КПД решается двумя путями: прямой нагрев в тепловых коллекторах и солнечные фотоэлектрические батареи.

    Солнечные батареи вначале преобразуют энергию солнечных лучей в электричество, затем передают через специальную систему потребителям, например электрокотлу.

    Тепловые коллекторы нагреваясь под действием солнечных лучей нагревают теплоноситель систем отопления и горячего водоснабжения.

    Тепловые коллекторы бывают нескольких видов, в числе которых открытые и закрытые системы, плоские и сферические конструкции, полусферические коллекторы концентраторы и многие другие варианты.

    Тепловая энергия, полученная с солнечных коллекторов используется для нагревания горячей воды или теплоносителя системы отопления.

    Несмотря на явный прогресс в разработке решений по собиранию, аккумулированию и использованию солнечной энергии, существуют достоинства и недостатки.

    Плюсы и минусы от использования энергии солнца

    Самым очевидным плюсом использования энергии солнца является ее общедоступность. На самом деле даже в самую хмурую и облачную погоду солнечная энергия может быть собрана и использована.

    Второй плюс — это нулевые выбросы. По сути, это самый экологически чистый и естественный вид энергии. Солнечные батареи и коллекторы не производят шума. В большинстве случаев устанавливаются на крышах зданий, не занимая полезную площадь загородного участка.

    Недостатки, связанные с использованием энергии солнца, заключаются в непостоянстве освещенности. В темное время суток становится нечего собирать, ситуация усугубляется тем, что пик отопительного сезона приходится на самые короткие световые дни в году.

    Необходимо следить за оптической чистотой панелей, незначительное загрязнение резко снижает КПД.

    Кроме того, нельзя сказать, что эксплуатация системы на солнечной энергии обходится полностью бесплатно, существуют постоянные затраты на амортизацию оборудования, работу циркуляционного насоса и управляющей электроники.

    Открытые солнечные коллекторы

    Открытый солнечный коллектор представляет собой незащищенную от внешних воздействий систему трубок, по которым циркулирует нагреваемый непосредственно солнцем теплоноситель. В качестве теплоносителя применяется вода, газ, воздух, антифриз. Трубки либо закрепляются на несущей панели в виде змеевика, либо присоединяются параллельными рядами к выходному патрубку.

    У открытых коллекторов нет обычно никакой изоляции. Конструкция очень простая, поэтому имеет невысокую стоимость и часто изготавливается самостоятельно.

    Ввиду отсутствия изоляции практически не сохраняют полученную от солнца энергию, отличаются низким КПД. Применяются их преимущественно в летний период для подогрева воды в бассейнах или летних душевых. Устанавливаются в солнечных и теплых регионах, при небольших перепадах температуры окружающего воздуха и подогреваемой воды. Хорошо работают только в солнечную, безветренную погоду.

    Трубчатые солнечные коллекторы

    Трубчатые солнечные коллекторы собираются из отдельных трубок, по которым курсирует вода, газ или пар. Это одна из разновидностей гелиосистем открытого типа. Однако теплоноситель уже намного лучше защищен от внешнего негатива. Особенно в вакуумных установках, устроенных по принципу термосов.

    Каждая трубка подключается к системе отдельно, параллельно друг другу. При выходе из строя одной трубки ее легко поменять на новую. Вся конструкция может собираться непосредственно на кровле здания, что значительно облегчает монтаж.

    Веский плюс трубчатых солнечных коллекторов заключается в цилиндрической форме основных элементов, благодаря которым солнечное излучение улавливается круглый световой день без применения дорогостоящих систем слежения за передвижением светила.

    По конструкции трубок различают перьевые и коаксиальные солнечные коллекторы.

    Коаксиальная трубка представляет собой сосуд Дьаюра или всем знакомый термос. Изготовлены из двух колб между которыми откачан воздух. На внутреннюю поверхность внутренней колбы нанесено высокоселективное покрытие эффективно поглощающее солнечную энергию.

    Тепловая энергия от внутреннего селективного слоя передается тепловой трубке или внутреннему теплообменнику из алюминиевых пластин. На этом этапе происходят нежелательные теплопотери.

    Перьевая трубка представляет собой стеклянный цилиндр со вставленным внутрь перьевым абсорбером.

    Для хорошей теплоизоляции из трубки откачан воздух. Передача тепла от абсорбера происходит без потерь, поэтому КПД перьевых трубок выше.

    По способу передачи тепла есть две системы: прямоточные и с термотрубкой (heat pipe).

    Термотрубка представляет собой запаянную емкость с легкоиспаряющейся жидкостью.

    Внутри термотрубки находится легкоиспаряющаяся жидкость, которая воспринимает тепло от внутренней стенки колбы или от перьевого абсорбера. Под действием температуры жидкость закипает и в виде пара поднимается вверх. После того как тепло отдано теплоносителю отопления или горячего водоснабжения, пар конденсируется в жидкость и стекает вниз.

    В качестве легкоиспаряющейся жидкости часто применяется вода при низком давлении.

    В прямоточной системе используется U-образная трубка, по которой циркулирует вода или теплоноситель системы отопления.

    Одна половина U-образной трубки предназначена для холодного теплоносителя, вторая отводит нагретый. При нагреве теплоноситель расширяется и поступает в накопительный бак, обеспечивая естественную циркуляцию. Как и в случае систем с термотрубкой, минимальный угол наклона должен составлять не менее 20⁰.

    Прямоточные системы более эффективны так как сразу нагревают теплоноситель.

    Если системы солнечных коллекторов запланированы к использованию круглый год, то в них закачивается специальные антифризы.

    Плюсы и недостатки трубчатых коллекторов

    Применение трубчатых солнечных коллекторов имеет ряд достоинств и недостатков. Конструкция трубчатого солнечного коллектора состоит из одинаковых элементов, которые относительно легко заменить.

    • низкие теплопотери;
    • способность работать при температуре до -30⁰С;
    • эффективная производительность в течение всего светового дня;
    • хорошая работоспособность в областях с умеренным и холодным климатом;
    • низкая парусность, обоснованная способностью трубчатых систем пропускать сквозь себя воздушные массы;
    • возможность производства высокой температуры теплоносителя.

    Конструктивно трубчатая конструкция имеет ограниченную апертурную поверхность. Обладает следующими недостатками:

    • не способна к самоочистке от снега, льда, инея;
    • высокая стоимость.

    Несмотря на первоначально высокую стоимость, трубчатые коллекторы быстрее окупаются. Имеют большой срок эксплуатации.

    Плоские закрытые солнечные коллекторы

    Плоский коллектор состоит из алюминиевого каркаса, специального поглощающего слоя – абсорбера, прозрачного покрытия, трубопровода и утеплителя.

    В качестве абсорбера применяют зачерненную листовую медь, отличающуюся идеальной для создания гелиосистем теплопроводностью. При поглощении солнечной энергии абсорбером происходит передача полученной им солнечной энергии теплоносителю, циркулирующему по примыкающей к абсорберу системе трубок.

    С наружной стороны закрытая панель защищена прозрачным покрытием. Оно изготовлено из противоударного закаленного стекла, имеющего полосу пропускания 0,4-1,8мкм. На такой диапазон приходится максимум солнечного излучения. Противоударное стекло служит хорошей защитой от града. С тыльной стороны вся панель надежно утеплена.

    В перечне преимуществ закрытых плоских панелей числятся:

    • простота конструкции;
    • хорошая производительность в регионах с теплым климатом;
    • возможность установки под любым углом при наличии приспособлений для изменения угла наклона;
    • способность самоочищаться от снега и инея;
    • низкая цена.

    Плоские солнечные коллекторы особенно выгодны, если их применение запланировано еще на стадии проектирования. Срок службы у качественных изделий составляет 50 лет.

    К недостаткам можно отнести:

    • высокие теплопотери;
    • большой вес;
    • высокая парусность при расположении панелей под углом к горизонту;
    • ограничения в производительности при перепадах температуры более 40°С.

    Сфера применения закрытых коллекторов значительно шире, чем гелиоустановок открытого типа. Летом они способны полностью удовлетворить потребность в горячей воде. В прохладные дни, не включенные коммунальщиками в отопительный период, они могут поработать вместо газовых и электрообогревателей.

    Сравнение характеристик солнечных коллекторов

    Самым главным показателем солнечного коллектора является КПД. Полезная производительность разных по конструкции солнечных коллекторов зависит от разности температур. При этом плоские коллекторы значительно дешевле трубчатых.

    При выборе солнечного коллектора стоит обратить внимание на ряд параметров показывающих эффективность и мощность прибора.

    Для солнечных коллекторов есть несколько важных характеристики:

    • коэффициент адсорбции – показывает отношение поглощенной энергии к общей;
    • коэффициент эмиссии – показывает отношение переданной энергии к поглощенной;
    • общая и апертурная площадь;
    • КПД.

    Апертурная площадь – это рабочая площадь солнечного коллектора. У плоского коллектора апертурная площадь максимальна. Апертурную площадь равна площади абсорбера.

    Способы подключения к системе отопления

    Поскольку устройства на солнечной энергии не могут обеспечить стабильное и круглосуточное снабжение энергией, необходима система устойчивая к этим недостаткам.

    Для средней полосы России солнечные устройства не могут гарантировать стабильный приток энергии, поэтому используются как дополнительная система. Интегрирование в существующую систему отопления и горячего водоснабжения отличается для солнечного коллектора и солнечной батареи.

    Схема подключении теплового коллектора

    В зависимости от целей использования теплового коллектора применяются разные системы подключения. Вариантов может быть несколько:

    1. Летний вариант для горячего водоснабжения
    2. Зимний вариант для отопления и горячего водоснабжения

    Летний вариант наиболее простой и может обходится даже без циркуляционного насоса, используя естественную циркуляцию воды.

    Вода нагревается в солнечном коллекторе и за счет теплового расширения поступает в бак-аккумулятор или бойлер. При этом происходит естественная циркуляция: на место горячей воды из бака засасывается холодная.

    Как любая система основанная на естественной циркуляции работает не очень эффективно, требуя соблюдения необходимых уклонов. Кроме того, аккумулирующий бак должен быть выше чем солнечный коллектор.

    Чтобы вода оставалась как можно дольше горячей бак необходимо тщательно утеплить.

    Если Вы хотите действительно добиться максимально эффективной работы солнечного коллектора, схема подключения усложниться.

    По системе солнечного коллектора циркулирует незамерзающий теплоноситель. Принудительную циркуляцию обеспечивает насос под управлением контроллера.

    Контроллер управляет работой циркуляционного насоса основываясь на показаниях как минимум двух температурных датчиков. Первый датчик измеряет температуру в накопительном баке, второй — на трубе подачи горячего теплоносителя солнечного коллектора. Как только температура в баке превысит температуру теплоносителя, в коллекторе контроллер отключает циркуляционный насос, прекращая циркуляцию теплоносителя по системе.

    В свою очередь при понижении температуры в накопительном баке ниже заданной включается отопительный котел.

    Схема подключения солнечной батареи

    Было бы заманчиво применить схожую схему подключения солнечной батареи к электросети, как это реализовано в случае солнечного коллектора, накапливая поступившую за день энергию. К сожалению для системы электроснабжения частного дома создать блок аккумуляторов достаточной емкости очень дорого. Поэтому схема подключения выглядит следующим образом.

    С солнечных панелей заряд поступает на контроллер заряда, который выполняет несколько функций: обеспечивает постоянную подзарядку аккумуляторов и стабилизирует напряжение. Далее электрический ток поступает на инвертор, где происходит преобразование постоянного тока 12В или 24В в переменный однофазный ток 220В.

    Увы, наши электросети не приспособлены для получения энергии, могут работать только в одном направлении от источника к потребителю. По этой причине вы не сможете продавать добытую электроэнергию или хотя бы заставить счетчик крутиться в обратную сторону.

    Использование солнечных батарей выгодно тем, что они предоставляют более универсальный вид энергии, но при этом не могут сравнится по эффективности с солнечными коллекторами. Однако последние не обладают возможностью накапливать энергию в отличие от солнечных фотоэлектрических батарей.

    Как посчитать необходимую мощность коллектора

    При расчете необходимой мощности солнечного коллектора очень часто ошибочно производят вычисления, исходя из поступающей солнечной энергии в самые холодные месяцы года.

    Дело в том, что в остальные месяцы года вся система будет постоянно перегреваться. Температура теплоносителя летом на выходе из солнечного коллектора может достигать 200°С при нагреве пара или газа, 120°С антифриза, 150°С воды. Если теплоноситель закипит, он частично испариться. В результате его придется заменить.

    Компании производители рекомендуют исходить из таких цифр:

    • обеспечение горячего водоснабжения не более 70%;
    • обеспечение отопительной системы не более 30%.

    Остальное необходимое тепло должно вырабатывать стандартное отопительное оборудование. Тем не менее при таких показателях в год экономится в среднем около 40% на отоплении и горячем водоснабжении.

    Мощность вырабатываемая одной трубкой вакуумной системы зависит от географического местоположения. Показатель солнечной энергии падающей в год на 1 м2 земли называется инсоляцией. Зная длину и диаметр трубки, можно высчитать апертуру – эффективную площадь поглощения. Остается применить коэффициенты абсорбции и эмиссии для вычисления мощности одной трубки в год.

    Стандартная длина трубки составляет 1800 мм, эффективная — 1600 мм. Диаметр 58 мм. Апертура – затененный участок создаваемый трубкой. Таким образом площадь прямоугольника тени составит:

    S = 1,6 * 0,058 = 0,0928м2

    КПД средней трубки составляет 80%, солнечная инсоляция для Москвы составляет около 1170 кВт*ч/м2 в год. Таким образом одна трубка выработает в год:

    W = 0,0928 * 1170 * 0,8 = 86,86кВт*ч

    Необходимо отметить, что это очень приблизительный расчет. Количество вырабатываемой энергии зависит от ориентирования установки, угла, среднегодовой температуры и т.д.

    Сетевые солнечные электростанции: выгодное вложение для домовладельцев

    Интерес к возобновляемым источникам электроэнергии (ВИЭ) во всем мире с каждым годом только растет и наша страна не исключение. В рамках программы государственной поддержки разрабатываются законодательные акты, ориентированные на развитие альтернативной энергетики не только в промышленных масштабах, но и в частной сфере. С принятием ФЗ № 35 «Об электроэнергетике» у домовладельцев появилась возможность перейти на качественно новый уровень – полноценно использовать сетевые солнечные электростанции. При участии специалиста компании ХЕВЕЛ разберемся с основными аспектами работы этих систем, их преимуществами и особенностями.

    Содержание

    Что такое микрогенерация

    В европейских странах микрогенерация развивается уже три десятилетия, у нас она делает только «первые шаги», но о перспективности данного направления говорит хотя бы тот факт, что даже в Великобритании почти на миллионе частных домов установлены фотоэлектрические модули. А ведь ее вполне обоснованно называют Туманным Альбионом из-за характерных климатических условий. В нашей стране сетевые солнечные электростанции, функционирующие параллельно с электрическими сетями, появились сравнительно недавно. Параллельный режим работы сетевой солнечной электростанции обеспечивает двусторонний обмен: электроэнергия может, как подаваться от генератора в централизованную электросеть, так и потребляться из сети при необходимости. Для учета отданной и потребленной электроэнергии используются двунаправленные (реверсные) счетчики. Сетевые солнечные электростанции – это возможность обеспечивать собственные потребности в электроэнергии в дневное время суток и продавать излишки.

    Согласно принятому ФЗ № 35 «Об электроэнергетике», каждый частник или юридическое лицо, установивший солнечную электростанцию мощностью до 15 кВт, имеет право отдать имеющиеся излишки в сеть. А сбытовая организация обязана эту выработанную, но не потребленную электроэнергию у объекта микрогенерации приобрести.

    Такую мощность электросети выделяют для объектов индивидуального жилищного строительства, а также для предприятий малого и среднего бизнеса, логично, что и за предел для микрогенерации взяли равное значение.

    Если же количество выработанной электроэнергии превысит объем потребляемой, то избытки можно реализовать. Например, в регионах с повышенной солнечной активностью или при снижении потребления в период отпусков, когда дома никого нет. А раз цели заработать на выработке электричества не стоит, то и налогообложение возможного дохода от продажи электроэнергии не предусмотрено.

    Почему для домовладельцев выгодны сетевые солнечные электростанции

    На данном этапе, когда технологии энергоэффективного, а, тем более, пассивного строительства распространены минимально, энергопотребление в частных домах выше, чем в городских квартирах. Не в последнюю очередь это связано с энергозависимыми автономными системами жизнеобеспечения. То есть, к стандартному набору потребителей (осветительные приборы, бытовая техника, гаджеты), добавляются объекты системы водоснабжения, отопления, канализации. Ввиду чего счета за электричество «съедают» львиную долю бюджета эксплуатации дома. Сетевые солнечные электростанции – это реальная возможность сокращения затрат на электроэнергию. Даже в регионах с относительно низкой солнечной активностью правильно подобранные по мощности солнечные модули полностью покроют потребности домовладения в дневное время.

    Солнце на большей части РФ со среднегодовым КИУМ (коэффициент использования установленной мощности) солнечных электростанций 14-16 %. И при поднятии магистрального тарифа до 4-8,5 руб/кВт*ч (в зависимости от региона РФ) население, при наличии права взаимозачитывать выработку и личное потребление – начнет ставить себе эти панели с сетевыми инверторами. Даже учитывая невысокий КИУМ солнечных панелей!

    Для участников портала тема микрогенерации и сетевых солнечных электростанций представляет все больший интерес, особенно ввиду постоянного роста тарифов на электроэнергию.

    Закон о микрогенерации, это социальный закон, заблаговременный костыль (заранее, для некоторой части россиян), будущий ограничитель жадности энергосбытов – в частном секторе, в частных домах, в которых, кстати, зачастую теперь живут и сами власти (министры и депутаты)… Имейте ввиду, что тарифы на электроэнергию для физических лиц обязательно будут расти – льготы по тарифам физическим лицам будут отменять, принципиальное решение уже принято, под эгидой якобы ухода от перекрестного субсидирования.

    В чем эти меры выразятся предметно?

    • Введут абонентскую плату за присоединённую тебе мощность (тратит или не тратил – неважно, что-то заплатишь, раз тебя присоединили к проводам).
    • Введут социальную норму, когда за превышение месячного лимита – влупят повышенный тариф.
    • Постепенно отменятпониженный коэффициент для электроплит и селян (сейчас это 0,7), ну и т. д.

    Стоит отдавать себе отчет, что установка сетевой солнечной электростанции – это независимость от постоянного роста тарифов за счет экономии на энергоносителях. Касательно гипотетической возможности заработка за счет реализации излишков, на данном этапе это сомнительно. И дело не только в потреблении львиной доли генерируемой энергии, но и в действующей схеме.

    Посмотрел поправки. С ними (возмещение по оптовой стоимости, это 1-2 руб/кВт*ч) закон для тех, кто не эколог в душе и не готов из своего кармана платить за более чистый воздух, бесполезен. Но тем, у кого есть возможность напрямую тратить большую часть энергии солнца в момент ее прихода, на свои потребители, стиралки, насосы, бойлеры, компьютеры, аккумуляторы и т. п. и такая возможность (по опту сдавать) будет не лишней, поскольку сейчас излишки у них просто пропадают.

    На текущий момент домовладельцы приобретают электроэнергию по розничным тарифам, которые, в зависимости от региона и наличия/отсутствия соцнорм, варьируются в достаточно широком диапазоне. А в сеть сбытовой организации отдавать излишки, выработанные сетевой солнечной электростанцией будут по оптовой стоимости.

    По самым оптимистичным прогнозам тарифы на электроэнергию за это время существенно вырастут и все вложения гарантированно окупятся. С учетом того, что система не требует какого-то сложного обслуживания, не нуждается в замене расходных материалов, а, значит, не требует регулярных капиталовложений, даже при действующих законах микрогенерация на базе солнечной энергии – перспективна.

    Нюансы реализации электроэнергии, вырабатываемой сетевой солнечной электростанцией

    Теоретически алгоритм достаточно простой.

    • Проконсультироваться со специалистом для подбора оптимального по мощности сетевого комплекта, с учетом возможностей генерации (солнечная активность в регионе установки) и потребностей в электроэнергии.
    • Купить и смонтировать сетевую солнечную электростанцию (возможна установка солнечных панелей, как на крыше, так и наземным способом).
    • Подать в региональную электросетевую компанию заявление на получение Технических Условий для объекта микрогенерации и установку специализированного двустороннего смарт-счетчика.
    • Заключить с ответственной энергосбытовой компанией договор на покупку электроэнергии.

    Энергосбытовая компания обязана приобрести у собственника избыточную мощность по заранее установленному тарифу. Это позволит собственнику снизить затраты на электричество, потребленное из сети, не только за счет использования солнечной энергии в дневное время, но и за счет отдачи избытков в сеть.

    За рубежом, например, в Польше, все действительно элементарно и в сжатые сроки, так как там микрогенерацию внедрили гораздо раньше, и все процессы отработаны до автоматизма. Скорее всего, спустя некоторое время, закон о микрогенерации в России будет так же слаженно работать.

    Пока же, главное, начать.

    Найдутся (неизбежно) в России десятки таких человек, которые пробьют, если понадобится и через ФАС и суды договора на микрогенерацию с ГП и сетями, опишут свои пути в интернете, а имея успешные примеры, затем потянутся и другие. Сначала будет немного людей (по числу энтузиастов), потом, надеюсь, больше.

    Есть и «первая ласточка».

    Сегодня получил ответ от Россети по форме 123 (подключение объектов микрогенерации). Требуют предоставить уточняющие данные. Загвоздка у меня будет только с Актом об осуществлении ТП, т. к. осуществлялось оно 80 лет назад, и на руках его нет, а если бы и было, то мощность там наверняка была выделена небольшая. Буду обращаться, чтобы выдали дубликат (по закону в течение семи дней после подачи заявления) Акта ТП.

    Вывод

    Сетевые солнечные электростанции, это не только экологичный и надежный, но и перспективный источник электроснабжения для частного дома. И даже с учетом первоначальных вложений, ввиду роста тарифов на электроэнергию, сроки окупаемости оборудования вполне могут порадовать.

    Подробнее о специфике работы и оптимальной мощности сетевых солнечных электростанций – в предыдущей тематической статье. Обсуждение микрогенерации в отечественных реалиях – в профильной ветке на форуме. В видео – как сделать дом автономным и не платить за электроэнергию.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: