Реально ли собрать вакуумный солнечный коллектор своими руками?

Солнечный коллектор своими руками: виды и методы сборки

Одним из вариантов экономии электроэнергии в солнечные дни может послужить простейший солнечный коллектор. Эту конструкцию нетрудно собрать своими руками, а нагретый теплоноситель применять для отопления и разнообразных бытовых потребностей. Конструктивно такой водонагреватель состоит из абсорбера (ключевой элемент), накопительной емкости и водопроводной системы. Для повышения эффективности желательно еще включить в систему циркуляционный насос.

Солнечные коллекторы – разновидности и нюансы

По возможностям повышения температуры воды гелио коллекторы принято разделять на три группы.

  • t +60° – высокотемпературная группа. Как правило, вакуумного типа с промышленными абсорберами. Предназначены для обогрева дома.

На современном рынке представлен широкий спектр солнечных коллекторов водяного и воздушного типа отечественных и зарубежных производителей, однако их стоимость относительно высока. При сборке своими руками затраты уменьшатся кратно, а общий КПД установки снижается всего на 15-25%.

Важно! Лучшим по эффективности является конструкция из подручных вспомогательных материалов и заводской модели абсорбера.

Наиболее распространенный вариант солнечного коллектора включает:

  • трубку или шланг, через который на нагревательный элемент будет подаваться вода или иной теплоноситель;
  • трехслойный абсорбер-водонагреватель – теплоизолятор снизу, стальной лист посередине, стекло или акрил сверху в деревянной или пластиковой раме на подставке;
  • трубку или шланг для отвода нагретой воды;
  • воздухоотводчик;
  • накопительный бак;
  • циркуляционный насос – опционно, как дополнительное оборудование.

С целью повышения КПД поверхность адсорбирующего листа окрашивают в черный цвет термостойкой краской. Это минимизирует отражение и позволяет поглощать до 99% тепловых фотонов в профессиональных моделях и до 80% – в самодельных.

Собрать подобный солнечный водяной коллектор самостоятельно не так уж сложно. Потребуется только набор необходимых материалов, вспомогательной периферии и минимальные навыки работы с инструментами.

Солнечный коллектор для отопления и водоснабжения своими руками – рассчитываем параметры

Перед изготовлением водонагревателя необходимо произвести расчет его будущей эффективности. Иначе говоря – определить, какой объем жидкости в состоянии нагреть панель определенной площади до заданных показателей температуры. Для удобства рассмотрим способности солнечного коллектора для нагревания воды или отопления, собранного своими руками, площадью 1 м2. Во сколько раз полученный результат окажется меньше планируемых потребностей и на столько потребуется увеличить площадь абсорбера с аналогичными физико-техническими характеристиками.

1. Поглощение энергии и потери тепла

На каждый квадратный метр поверхности падает следующее количество теплового излучения:

Чистое небо (лето)

Примем среднее значение за 800 Вт и произведем расчет для солнечного водяного коллектора в 1кв.м., собранного своими руками.

Исходные данные для вычисления процента потерь:

  • корпус – деревянный короб;
  • лицевая сторона – зачерненное стекло;
  • абсорбер – стальной лист;
  • нагревающийся трубный контур в корпусе;
  • теплоизолятор – пенопласт, 10 см (коэффициент теплопроводности ≈ 0,05 Вт/м*град);
  • разница начальной и конечной температур – 30°С;
  • нагреваемый теплоноситель – вода (теплоемкость ≈ 1,15 Вт/кг*град)

Подставим толщину и теплопроводность пенопласта в таком водяном нагревателе самостоятельной сборки в формулу и получим результат:

0,05 / 0,1 * 30 = 15 Вт.

Это первая часть потерь, полученная тепловыделением тыльной стороны корпуса. Вторая часть будет потеряна за счет выделения тепла в окружающее пространство трубного контура и деревянных торцов. Ее величина при такой температурной разнице примерно равна первой. Общее снижение производительности составит 15 + 15 = 30 Вт, а итоговое поглощение 800 – 30 = 770 Вт при ясной погоде и 570 Вт, если небо частично затянется облаками.

Следовательно, солнечный водяной коллектор площадью 1 квадратный метр, который был собран своими руками, сможет нагреть:

  • за 1 час в ясную погоду 770 Вт / 1,15 Вт/кг*град ≈ 670л воды на 1°, или 22,3 л на 30°;
  • за 1 час при легкой облачности 570 Вт / 1,15 Вт/кг*град ≈ 495л воды на 1°, или 16,5 л на 30°.

Следует принимать во внимание, что в утренние и вечерние часы, а также весной, осенью и зимой интенсивность солнечного излучения уменьшается.

Важно! При нагреве воды до 60 градусов и выше потери тепла начинают расти экспоненциально, и времени на разогрев понадобится намного больше.

2. Просчитываем возможности потребления

Предположим, в загородном коттедже проживает четыре человека, и членам семьи необходимо 50 л нагретой воды в сутки каждому. Мы определили, что в среднем собранный вручную солнечный коллектор площадью 1кв.м. способен нагреть на 30 градусов около 20 л воды за час при оптимальных условиях. Среднесуточная выработка, из расчета работы установки с утра до вечера, окажется равной примерно 85 литрам – при непрямом солнце КПД быстро падает. Чтобы получить необходимые 4х50 = 200 литров воды, площадь коллектора понадобится увеличить до 200 / 85 = 2,35 м2.

Так семья может обеспечить себя водой температурой около 50 градусов. Если гелиоколлектор ручной сборки предполагается использовать для отопления, площадь понадобится увеличивать многократно. Связано это с тем, что зимой уровень солнечной инсоляции падает не менее, чем в 5 раз, а сам день становится вдвое короче.

Солнечный коллектор для нагрева воды и отопления – как изготовить и собрать

О том, как сделать солнечный коллектор своими руками, выпущены тысячи видео и множество специализированных статей. О наиболее простых и распространенных вариантах коротко расскажем и мы.

Важно! Замена абсорбера заводской сборки любыми другими самодельными поглощающими материалами приведет к снижению максимального КПД примерно на 20-25%. Причина состоит в значительных потерях тепла без использования слоя вакуума между магистралью теплоносителя и окружающей средой.

1. Тепловой солнечный коллектор своими руками из каучукового шланга

Самый простой в сборке и недорогой вариант водонагревателя – конструкция, в которой вместо труб используется обычный шланг из качественной резины. При его 100-метровой длине подобный гелиоколлектор собирается своими руками буквально за несколько часов, а объем горячей воды составляет 20 л. Если такого количества недостаточно, можно увеличить длину и/или оснастить систему циркулярным насосом

Шланг должен быть достаточно тонким и иметь внутреннее сечение 2-2,5 см. Изделие с толстыми стенками не годится, поэтому армированные варианты придется исключить. Материалом может выступать резина, полипропилен, ПВХ. Последние варианты, из-за лучших прочностных качеств полимеров, предпочтительней.

Укладка производится в любой самодельный короб методом скручивания шланга в спираль и фиксации колец относительно друг друга. Также рекомендуется прикрепить кольцевую заготовку к нижней стороне такого бокса, во избежание периодического смещения. Корпус желательно окрасить в черный цвет, что значительно повысит КПД конструкции.

2. Плоский солнечный коллектор своими руками из оконной рамы для нагрева воды

Очень удобной в качестве основы является и старая двойная оконная рама. Сборка своими руками такой модели солнечного коллектора производится следующим путем:

  • к нижней части крепится слой теплоизоляции;
  • на него укладывается стальной лист, окрашенный черной краской;
  • поверх него спиралью либо змейкой крепится медная или полимерная трубка сечением около половины дюйма (≈1,25 см);
  • почти готовая конструкция зажимается сверху второй половиной рамы – для скрепления створок можно использовать болты, струбцины либо винты;
  • накопительный бак закрепляется на 40-50 см выше абсорбера – это позволит холодной воде течь самотеком, а горячей подниматься под воздействием давления;
  • если будет использоваться сборочная емкость, ее рекомендуется качественно утеплить, чтобы избежать ненужных потерь тепла.
Читайте также:
Тепловой насос для обогрева бассейна: какой выбрать?

Денежные расходы и трудоемкость сборки своими руками подобного солнечного коллектора следует признать незначительными, а КПД может достигать 75%.

3. Солнечный коллектор своими руками из деталей выброшенного холодильника

Мастера-самоучки приспособились изготавливать солнечные водяные коллекторы из подходящих деталей самой разнообразной техники. Чаще других встречаются модели из автомобильных радиаторов и конденсаторов выброшенных на свалку холодильников.

Последний вариант удобен тем, что в наличии уже имеется готовая система циркуляции воды. Необходимо лишь тщательно промыть трубки и решетку и запастись следующими материалами:

  • емкостью для воды;
  • резиновым ковриком в качестве подложки;
  • металлической фольгой для снижения теплопотерь;
  • скотчем для скрепления деталей;
  • деревянными брусками на будущую раму;
  • оконным стеклом для верхнего защитного слоя.

Далее пошагово осуществляется этап сборки своими руками солнечного коллектора из старого холодильника:

  • изготавливается деревянный короб по размеру решетки-конденсатора;
  • днище выстилается металлической фольгой;
  • щели заготовки тщательно заклеиваются скотчем;
  • емкость для воды закрепляется на 30-40 см выше места, где расположена верхняя выводная трубка теплообменника конденсатора и соединяется с ним шлангом;
  • при желании повысить скорость циркуляции воды в схему солнечного коллектора можно включить насос от аквариума;
  • поверх почти готовой конструкции укладывается и закрепляется стекло;
  • швы еще раз проверяются и тщательно герметизируются.

Самодельный коллектор подобного типа за час способен нагреть 10 л воды с 20° до 45° Цельсия.

4. Воздушный солнечный коллектор из профнастила своими руками

Отдельно следует упомянуть воздушные солнечные коллекторы. Своими руками они собираются по аналогичному принципу, но вместо воды нагревают обычный воздух. Примером такой установки может служить нагревательная система с абсорбером в виде листа профнастила. Местом его установки может выступать обычный оконный проем помещения, в которое необходимо подавать сухой горячий воздух.

Пошаговый процесс сборки следующий:

  • в стене просверливаются вентиляционные отверстия – через них будет подаваться свежий воздух и выводиться горячий;
  • из деревянного бруса толщиной 10-15 мм изготавливается прямоугольный короб под размер проема – например, 180 на 120 см;
  • с тыльной стороны корпуса прикручивается саморезами лист влагостойкой фанеры толщиной 6-8 мм;
  • изнутри на днище вплотную вкладывается рамка из брусков квадратным сечением 4х4 см и наполняется теплоизолятором – минеральной ватой;
  • поверх нее набивается лист профнастила типа Н57 соответствующих размеров;
  • производится его окраска матовой краской глубокого черного цвета;
  • сверху закрепляется прозрачное классическое стекло или качественный акрил (можно использовать половину старой оконной рамы);
  • сверлятся в боковинах отверстия для доступа воздуха.

Наш воздушный солнечный коллектор, изготовленный своими руками, готов.

Эффективность такой установки примерно следующая:

5. Вакуумные солнечные коллекторы для отопления дома своими руками

Наиболее производительными среди самодельных вариантов являются вакуумные солнечные коллекторы. Процедура их сборки для отопления или снабжения теплой водой тоже осуществляется своими руками. Но в конструкции используются специальная панель со стеклянными двухслойными колбами, откуда промышленным способом выкачан воздух, и трубкой-магистралью из меди с теплоносителем.

За счет внедрения вакуумной технологии себестоимость таких водонагревателей выше, но это окупается значительным повышением КПД.

Последовательность сборки коллектора стандартная:

  • сколачивается короб с фанерным днищем и боковыми планками, сечение которых больше, чем диаметр приобретенных трубок;
  • нижним слоем выступает теплоизолятор-пенопласт толщиной ≈ 100 мм;
  • далее укладываются вакуумные трубки – скрепление их выполняется специальными фиксаторами (продаются в комплекте);
  • монтируется абсорбер – выкрашенный черным лист оцинкованной стали либо приобретенный в магазине профессиональный вариант;
  • контур остекляют и подвергается тщательной герметизации.

Для отопления дома подобный солнечный коллектор эффективнее, чем собранный своими руками полностью из легкодоступных и недорогих материалов. Однако летом простаивание полупрофессиональной модели нецелесообразно, поэтому оптимально устанавливать ее и с целью летнего снабжения теплой водой теплиц.

Важно! Даже лучший солнечный коллектор не заменит Вам полноценную отопительную систему. Поэтому его использование предполагается лишь как вспомогательное и повышающее общую энергоэффективность жилья.

Как улучшить КПД самодельных конвекторов

Ключевым элементом всех солнечных коллекторов – как заводского изготовления, так и собранных своими руками – являются абсорберы. Благодаря таким поглотителям излучения поток фотонов солнца преобразуется в тепло и далее передается теплоносителю. Основная задача абсорберов, как и всех прочих преобразователей энергии – оптимизировать уровень поглощения и потерь. Первый всегда стремятся увеличить, а второй уменьшить.

Использование в качестве абсорберов подручных материалов и покрытие их черной краской позволяет довести процент поглощения α (альфа) почти до профессионального уровня в 92-95%. Однако добиться аналогичного результата со снижением почти до нуля теплоотдачи ε (эпсилон) в собранных своими руками солнечных коллекторах невозможно.

Промышленные абсорберы имеют такую возможность и используют для повышения КПД две технологии – селективное покрытие поглотителя и помещение трубки с теплоносителем в вакуумную колбу. Абсорбция многослойного – 10-16 слоев – абсорбера заводской сборки практически не допускает обратного отражения света. А наличие вакуума между медными трубками с водой и внешней стеклянной оболочкой сводит потери тепла во внешнюю среду почти до нуля.

Применяются в фирменных абсорберах и прочие важные технологии – серебрение поверхности, чрезвычайно прозрачное и сверхпрочное боросиликатное стекло, бариумный поглотитель для увеличения срока службы трубок и т.д.

Это позволяет эффективно использовать коллекторы вакуумного типа, как всепогодные, даже зимой, для отопления дач или теплиц, а также кратно увеличивать срок их службы.

Если Вашей целью является сборка максимально эффективного солнечного коллектора для отопления и/или горячего водоснабжения дома своими руками, приобретите для него профессиональный абсорбер в нашем магазине: смотреть описание и цены .

За счет меньших потерь тепла, всепогодности и длительного срока службы Ваши вложения многократно окупятся.

Делаем солнечный коллектор своими руками

Концепция энергетически эффективного дома предполагает создание, внедрение и эксплуатацию возобновляемых источников энергии. Все большее распространение стали получать собранные солнечный коллектор своими руками, которые не так давно встречались крайне редко.

Постоянное совершенствование гелиосистем, существенное падение цен на них привило к еще большему появлению их в обыденной жизни. Стоимость заводских моделей сегодня соизмерима с затратами, необходимыми на обустройство классической системы отопления. Однако такую технологию может сделать каждый самостоятельно.

Читайте также:
Газовый холодильник: ремонт, как сделать своими руками

  • 1 Принцип работы солнечного коллектора
  • 2 Вводное видео об устройстве водонагревателя
  • 3 Виды солнечных коллекторов
    • 3.1 Вакуумные солнечные коллекторы
    • 3.2 Плоские солнечные коллекторы
  • 4 Чертежи конструкций
  • 5 Солнечный коллектор из змеевика холодильника

Принцип работы солнечного коллектора

Если кратко описать принцип работы коллектора – он необходим для захвата солнечной тепловой энергии. В дальнейшем она концентрируется и используется человеком.

Коллекторная система состоит из следующих составляющих:

  • Тепловой аккумулятор (обычная емкость под жидкость)
  • Теплообменный контур
  • Непосредственно коллектор

Жидкий или газообразный теплоноситель циркулирует по коллектору. Полученная энергия нагревает его и, посредством смонтированного бака-аккумулятора, передает тепло воде.

Нагретая жидкость хранится в баке до того, покуда она не будет использована. Сфера ее применения очень широка – от обычных хозяйственных нужд до отопления дома. Чтобы вода быстро не остывала, необходимо качественно тепло изолировать емкость.

Циркуляцию воды в коллекторе делают одним из двух способов: естественным или принудительным способом. В баке-аккумуляторе может монтироваться дополнительный элемент, нагревающий жидкость, который будет включаться при достижении низких температур окружающей среды и поддерживать температуру воды, например, зимой, когда солнцестояние непродолжительное.

Вводное видео об устройстве водонагревателя

Виды солнечных коллекторов

Планируя солнечный коллектор своими руками и установить в доме, необходимо определиться с типом конструкции:

  • Воздушный
  • Вакуумный

Модели, у которых теплоносителем является воздух, используются крайне редко. Это связано со свойствами жидкости — тепло она проводит значительно лучше, чем газ. Воздушные коллекторы чаще делают плоской формы, чтобы воздух, контактируя с поглощающим устройством, естественным образом нагревался.

схема воздушного солнечного коллектора

Вакуумные солнечные коллекторы

Вакуумные модели самые сложные. Вместо коробки, которая покрывается стеклом, у него используются большие по габаритам трубки из стекла. Внутри них имеются трубочки с меньшим диаметром, в которых находится абсорбер, собирающий тепловую энергию. Между трубками – вакуум, он выполняет роль теплоизолятора.

схема вакумного солнечного коллектора

Плоские солнечные коллекторы

Самым распространенным является плоский солнечный коллектор, внутри которого располагается специальный абсорбирующий слой, помещенный в стеклянную коробку. Он соединяется с трубками, по которым перемещается жидкий теплоноситель (чаще пропилен-гликоль).

схема плоского солнечного коллектора

Но решаясь смастерить солнечный коллектор своими руками, необходимо понимать, что сделать столь сложные устройства невозможно, аналогичные промышленным. К тому же, их КПД будет значительно ниже, меньше эксплуатационный срок, но и материальные вложения тоже.

Хотите узнать больше про альтернативное отопление дома ?

Читайте так же, о том как сделать отопление дома на солнечных батареях

Чертежи конструкций

Приступаем к работе

Прежде чем сооружать солнечный коллектор, необходимо произвести соответствующие расчеты и определить, как много энергии он должен производить. Но от самодельной установки ждать высокого КПД не стоит. Сориентировавшись, что его будет достаточно – можно приступать.

Работу можно поделить на несколько основных этапов:

  1. Изготовить короб
  2. Изготовить радиатор или теплообменник
  3. Изготовить аванкамеру и накопитель
  4. Собрать коллектор

Чтобы изготовить коробку под солнечный коллектор своими руками, следует заготовить обрезную доску толщиной 25-35 мм и в ширину 100-130 мм. Дно ее следует сделать текстолитовым, оснастив его ребрами. Оно также должно быть хорошо теплоизолированное при помощи пенопласта (но предпочтение отдают минеральной вате), накрытого оцинкованным листом.

Еще 4 эффективных способа альтернативного отопления дома

О которых вы можете узнать в нашей следующей статье

Подготовив короб, настает пора мастерить теплообменник. Следует придерживаться инструкции:

  1. Необходимо подготовить 15 тонкостенных металлических трубок длиной 160 см и две дюймовые трубы длиной 70 см
  2. В обоих утолщенных трубках сверлятся отверстия диаметра меньших трубок, в которые они будут устанавливаться. При этом нужно следить за тем, чтоб они были по одной стороне соосны, максимальный шаг между ними 4.5 см
  3. Следующий этап – все трубки нужно собрать в единую конструкцию и надежно сварить
  4. Теплообменник монтируется на лист оцинковки (ранее прикрепленный к коробу) и фиксируется при помощи стальных хомутов (можно сделать металлические зажимы)
  5. Днище короба рекомендуют покрасить в темный цвет (например, черный) – он будет лучше поглощать солнечное тепло, но чтобы снизить тепловые потери, внешние элементы красятся белым
  6. Завершить монтаж коллектора необходимо установкой покровного стекла около стенок, при этом не забыв о надежной герметизации стыков
  7. Между трубками и стеклом оставляется расстояние, равное 10-12 мм

Остается соорудить накопитель под солнечный коллектор. Его роль может исполнять герметичная емкость, объем которой варьируется около 150-400 л. Если найти одну такую бочку не удается, можно сварить между собой несколько небольших.

Как и коллектор, накопительный бак основательно изолируют от потерь тепла. Остается изготовить аванкамеру – небольшой сосуд объемом 35-40 л. Он должен оснащаться падающим воду устройством (шарнирным краном).

Остается самый ответственный и важный этап – собрать коллектор воедино. Сделать это можно таким образом:

  1. Вначале необходимо установить аванкамеру и накопитель. Необходимо следить, чтоб уровень жидкости в последнем был на 0.8 м ниже, чем в аванкамере. Так как воды в таких устройствах может собираться немало, необходимо продумать, каким образом они будут надежно перекрываться
  2. Коллектор размещается на крыше дома. Исходя из практики, рекомендуется делать это на южной стороне, наклонив установку под углом 35-40 градусов к горизонту
  3. Но нужно учитывать, что между накопителем и теплообменником расстояние не должно превышать 0.5-0.7 м, иначе потери будут слишком существенны
  4. В конце должна получиться следующая последовательность: аванкамера обязана располагаться выше накопителя, последний – выше коллектора

Наступает самый ответственный этап – необходимо соединить все составляющие воедино и подключить к готовой системе водопроводную сеть. Для этого потребуется посетить магазин сантехники и приобрести необходимые фитинги, переходники, сгоны и прочую запорную арматуру. Высоконапорные участки рекомендуют соединять трубой диаметром 0.5 дюйма, низконапорные – 1 дюйм.

Введение в эксплуатацию выполняется следующим образом:

  1. Установка заполняется водой посредством нижнего дренажного отверстия
  2. Подсоединяется аванкамера и регулируются уровни жидкости
  3. Необходимо пройтись вдоль системы и проверить, чтобы не было утечек
  4. Все готово к повседневной эксплуатации

Солнечный коллектор из змеевика холодильника

Солнечный коллектор своими руками можно смастерить из обычного змеевика, снятого со старого холодильника. Для работы потребуется подготовить:

  1. Непосредственно змеевик
  2. Рейки и фольга для каркаса
  3. Бочка или бак для воды
  4. Резиновый коврик
  5. Запорная арматура (вентили, труб и т. д.)
  6. Стекло

Промыв змеевик от фреона, необходимо сбить вокруг реечный каркас. Его точные размеры будут зависеть от размера рабочего узла, который был демонтирован с холодильника. Коврик необходимо подогнать под рейки, среди которых змеевик должен свободно располагаться.

На резиновый коврик (дно каркаса) укладывается фольгирующий слой. Затем змеевик фиксируют при помощи винтовых хомутов. В стенках проделываются отверстия, через которые будут проходить трубы. Повысить продуктивность можно за счет герметизации стыков герметикам.

Дно также укрепляется рейками. Сверху монтируется стекло и фиксируют при помощи скотча. Чтобы не волноваться, можно вырезать несколько алюминиевых пластинок и сделать из них прижимы.

Видео о техническом устройстве и испытании солнечного коллектора:

Такое сооружение, как солнечный коллектор своими руками, может существенно повысить уровень комфорта в загородном доме или на даче. Пусть незначительно, но оно снижает траты на потребляемую энергию, вырабатываемую классическими источниками энергии.

Солнечный коллектор своими руками — как собрать гелиоколлектор

Альтернативные источники возобновляемой энергии пользуются огромной популярностью. В некоторых странах ЕС автономное теплоснабжение покрывает более 50% потребностей в энергии. В РФ солнечные коллекторы пока не получили широкого распространения. Одна из основных причин: дороговизна оборудования. За гелиопанель отечественного изготовителя потребуется отдать не менее 16-20 тыс. руб. Продукция европейских брендов обойдется еще дороже, начиная с 40-45 тыс. руб.

Изготовление солнечного коллектора своими руками будет дешевле, по крайней мере в половину. Самодельный гелиоколлектор обеспечит достаточным количеством тепла для нагрева душевой воды на 3-4 человек. Для изготовления понадобятся строительные инструменты, смекалка и подручные средства.

Из чего можно сделать гелиосистему

Для начала следует разобраться в том, какой принцип работы использует солнечный водонагреватель. Во внутреннем устройстве блока присутствуют следующие узлы:

теплообменник, внутри которого будет циркулировать теплоноситель;

  • отражатели для фокусировки солнечных лучей.
  • Читайте также:
    Геотермальное отопление дома своими руками: схема и особенности монтажа

    Заводской коллектор для нагрева воды от солнца работает следующим образом:

      Абсорбция тепла — солнечные лучи проходят сквозь стекло, расположенное поверх корпуса, либо через вакуумные трубки. Внутренний абсорбирующий слой, контактирующий с теплообменником окрашен селективной краской. При попадании солнечных лучей на абсорбер выделяется большое количество тепла, которое собирается и используется для нагрева воды.

    Теплопередача — абсорбер расположен в тесном контакте с теплообменником. Аккумулируемое абсорбером и передаваемое теплообменнику тепло нагревает жидкость, движущуюся по трубкам к змеевику внутри бака теплонакопителя. Циркуляция воды в водонагревателе осуществляется принудительным или естественным способом.

    ГВС — используется два принципа подогрева горячей воды:

      Прямой нагрев — горячая вода после нагрева попросту сбрасывается в теплоизолированную емкость. В моноблочной гелиосистеме в качестве теплоносителя используется обычная бытовая вода.
  • Второй вариант — обеспечение ГВС с пассивным водонагревателем по принципу косвенного нагрева. Теплоноситель (часто антифриз) под давлением направляется в теплообменник гелиоколлектора. После нагрева разогретая жидкость подается в накопительный бак, внутри которого встроен змеевик (играющий роль нагревательного элемента), окруженный водой для системы горячего водоснабжения.
    Теплоноситель разогревает змеевик, посредством чего и передает тепло воде, находящейся в емкости. При открытии крана нагретая вода из теплоаккумулирующей ёмкости поступает к точке водоразбора. Особенность гелиосистемы с косвенным нагревом в способности работать в течение всего года.
  • Принцип работы, используемый в дорогостоящих заводских гелиосистемах, копируется и повторяется в коллекторах, изготавливаемых своими руками.

    Рабочие конструкции солнечных водонагревателей имеют схожее устройство. Только изготавливаются из подручных материалов. Существуют схемы производства коллекторов из:

  • ПНД и ПВХ труб.
  • Судя по схемам, современные «Кулибины» отдают предпочтение самодельным системам с естественной циркуляцией, термосифонного типа. Особенность решения в том, что накопительную емкость располагают в верхней точке ГВС. Вода самотеком циркулирует в системе и подается потребителю.

    Коллектор из поликарбоната

    Изготавливают из сотовых панелей, отличающихся хорошими теплоизоляционными свойствами. Толщина листов от 4 до 30 мм. Выбор толщины поликарбоната зависит от необходимой теплоотдачи. Чем толще лист и ячейки в нем, тем больше воды сможет нагреть установка.

    Чтобы самому сделать гелиосистему, в частности самодельный солнечный водонагреватель из поликарбоната, понадобятся следующие материалы:

      две штанги с нарезанной резьбой;

    пропиленовые уголки, на фитингах должно быть наружное резьбовое соединение;

    пластиковые трубы ПВХ: 2 шт, длина 1,5 м, диаметр 32;

  • 2 заглушки.
  • Трубы укладывают в корпус параллельно. Подключают к ГВС через отсекающие краны. Вдоль трубы делают тонкий надрез, в который можно вставить лист поликарбоната. Благодаря принципу термосифона вода будет самостоятельно поступать в желобки (ячейки) листа, нагреваться и уходить в накопитель, расположенный вверху всей системы нагрева. Для герметизации и фиксации листов, вставленных в трубу, используют силикон, стойкий к термическому воздействию.


    Чтобы увеличить теплоэффективность коллектора из сотового поликарбоната, лист покрывают любой селективной краской. Нагрев воды после нанесения селективного покрытия ускоряется приблизительно в два раза.

    Коллектор из вакуумных трубок

    В этом случае не получится обойтись исключительно подручными средствами. Для изготовления солнечного коллектора придется купить вакуумные трубки. Их продают компании, занимающиеся обслуживанием гелиосистем и непосредственно производители гелиоводонагревателей.

    Для самостоятельного производства лучше выбирать колбы с перьевыми стержнями и тепловым каналом heat-pipe. Трубки легче монтировать и менять в случае необходимости.

    Также нужно приобрести блок-концентратор для вакуумного солнечного коллектора. При выборе обращают внимание на производительность узла (определяется по количеству трубок, которые можно одновременно подключить к устройству). Раму изготавливают самостоятельно, собирая деревянный каркас. Экономия при изготовлении в домашних условиях, с учетом приобретения готовых вакуумных трубок, составит не менее 50%.

    Гелиосистема из пластиковых бутылок

    Для приготовления потребуется около 30 шт. ПЭТ бутылок. При сборке удобнее использовать тару одинакового размера на 1 или 1,5 л. На подготовительном этапе с бутылок снимают этикетки, поверхность тщательно промывают. Кроме пластиковой тары понадобится следующее:

      12 м шланга для полива растений, диаметром 20 мм;

    8 Т-образных переходников;

    рулон тефлоновой пленки;

  • 2 шаровых крана.
  • При изготовлении солнечных коллекторов из пластиковых бутылок внизу основания делают отверстие, равное диаметру горлышка, куда вставляют резиновый шланг, либо ПВХ трубу. Коллектор собирают в 5 рядов по 6 бутылок на каждой линии.


    В ясный день уже через 15 мин. вода нагреется до температуры 45°С. Учитывая высокую производительность солнечный водонагреватель из пластиковых бутылок имеет смысл подключить к накопительной емкости в 200 л. Последнюю хорошо утепляют для предотвращения теплопотерь.

    Коллектор из алюминиевых пивных банок

    Алюминий отличается хорошими теплотехническими характеристиками. Не удивительно, что металл используют для изготовления радиаторов отопления.

    Алюминиевые банки можно применять при изготовлении самодельных гелиосистем. Для производства не подойдут банки из жести и любого другого металла.

    Для одной гелиопанели будут необходимы следующие комплектующие:

      банки, около 15 шт. на линию, в корпус вмещается 10-15 рядов;

    теплообменник — используется коллектор из резинового шланга, или пластиковых труб;

    клей для склеивания банок между собой;

  • селективная краска.
  • Поверхность банок окрашивается в темный цвет. Короб накрывают толстым стеклом или поликарбонатом.


    Солнечный коллектор из алюминиевых банок чаще изготавливают для воздушного отопления. При использовании водяного теплоносителя снижается теплоэффективность устройства.

    Читайте также:
    Гибкие солнечные панели: инструкция по эксплуатации

    Гелиосистема из холодильника

    Еще одно популярное решение, требующее минимальных затрат времени и средств. Солнечный коллектор делают из радиатора старого холодильника. Змеевик уже окрашен в черный цвет. Достаточно только уложить решетку в деревянный корпус с изоляцией и подключить его к ГВС, при помощи пайки.

    Существует вариант изготовления из конденсатора кондиционера. Для этого несколько радиаторов соединяют в единую сеть. Если существует возможность приобрести дешево около 8 шт. конденсаторов, изготовление коллектора вполне возможно.

    Коллектор из медных трубок

    Медь отличается хорошими теплотехническими свойствами. При изготовлении медного солнечного коллектора используют:

      трубы диаметром 1 1/4″, используемые при монтаже систем отопления и горячего водоснабжения;

    трубы на 1/4″, используемые в системах кондиционирования;

  • припой и флюс.
  • Корпус радиаторной решетки собирается из медных труб с большим диаметром. В поверхности просверливают отверстия равные 1/4″. В полученные пазы вставляют трубы соответствующего диаметра. Радиатор закрывают стеклом или поликарбонатом. Медь окрашивают селективной краской.

    Солнечный бойлер из ПНД труб и ПВХ шлангов

    При производстве гелиосистем используют практически любой подручный материал. Существуют решения, позволяющие изготовить коллектор из гофрошланга, резинового шланга, используемого для полива растений.

    Существует возможность изготовления солнечного коллектора из гофрированной нержавеющей трубы. Популярность решения обусловлена скоростью и простотой монтажа. Гофротруба из нержавейки укладывается кольцами или змейкой. Недостаток, относительная дороговизна нержавеющей гофрированной трубы.

    Несмотря на существующие варианты, описанные выше, наиболее популярными остаются солнечные коллекторы из пропиленовых и ПНД труб. У каждого варианта есть свои преимущества:

      Солнечный коллектор из ПНД трубы — для изготовления выбирают материал, устойчивый к нагреванию. Продается большое количество фитингов, облегчающих сборку теплоаккумулирующего радиатора. Трубы из полиэтилена низкого давления изначально имеют черный или темно-синий цвет, поэтому не требуют окрашивания.

  • Солнечный коллектор из ПВХ труб — популярность решения в простоте монтажа конструкции, осуществляемого с помощью пайки. Наличие большого количества уголков, тройников, американок и других фитингов облегчает процесс сборки. С помощью пайки можно создать теплообменник коллектора любой конфигурации.
  • Изготовление солнечного водогрейного коллектора из PEX трубы:

    Все описанные трубы с той или иной эффективностью используются в качестве сердечника при изготовлении самодельного гелиоколлектора из пластиковых бутылок и алюминиевых банок.

    Как сделать селективное покрытие

    Высокоэффективный коллектор имеет высокую степень поглощения солнечной энергии. Лучи попадают на темную поверхность, после чего нагревают ее. Чем меньше излучения отталкивается от абсорбера солнечного коллектора, тем больше тепла остается в гелиосистеме.

    Чтобы обеспечить достаточную аккумуляцию тепла требуется создать селективное покрытие. Вариантов производства несколько:

      Самодельное селективное покрытие коллектора — используют любые черные краски, которые после высыхания оставляют матовую поверхность. Есть решения, когда в качестве абсорбера коллектора применяют непрозрачную темную клеенку. На трубы теплообменника, поверхность банок и бутылок наносят черную эмаль, с матовым эффектом.

  • Специальные абсорбирующие покрытия — можно пойти другим путем, приобретя для коллектора специальную селективную краску. В состав селективных ЛКМ входят полимерные пластификаторы и присадки, обеспечивающие хорошую адгезию, теплостойкость и высокую степень поглощения солнечных лучей.

  • Гелиосистемы, используемые исключительно для нагрева воды летом, вполне могут обойтись окрашиванием абсорбера в черный цвет при помощи обычной краски. Самодельные солнечные коллекторы для отопления дома зимой должны иметь качественное селективное покрытие. Экономить на краске нельзя.

    Самодельная или заводская гелиосистема — что лучше

    Изготовить в домашних условиях солнечный коллектор, способный по техническим характеристикам и показателям сравниться с заводской продукцией нереально. С другой стороны, если требуется просто обеспечить достаточным количество воды для летнего душа, солнечной энергии будет достаточно для работы простейшего самодельного водонагревателя.

    Что касается жидкостных коллекторов, работающих зимой — то даже не все заводские гелиосистемы могут работать при низких температурах. Всесезонные системы, это чаще всего устройства с вакуумными тепловыми трубками, с повышенным КПД, способные работать до температуры –50°С.

    Заводские гелиоколлекторы часто укомплектовываются поворотным механизмом, автоматически подстраивающим угол наклона и направленность панели по сторонам света, в зависимости от расположения Солнца.

    Эффективный солнечный водонагреватель тот, что полностью соответствует поставленным перед ним задачам. Для подогрева воды на 2-3 человек летом, можно обойтись обычным гелиоколлектором, изготовленным своими руками из подручных средств. Для отопления зимой, несмотря на первоначальные затраты, лучше установить заводскую гелиосистему.

    Видеокурс по изготовлению панельного солнечного водонагревателя

    Бумажная батарея – тип электрической батареи

    Бумажная батарея – тип электрической батареи, созданной для использования спейсеров, сделанных, в основном, из целлюлозы (главной составляющей бумаги). В ее состав включены наноструктуры, выполняющие функцию электродов с большой площадью поверхности для улучшения проводимости.

    Помимо крайне малой толщины, бумажные батареи – гибки и экологически чисты, что позволяет использовать их в широком ряде товаров. Их принцип работы схож со стандартными химическими батареями, за исключением того, что первые не подвержены коррозии и не требуют большого количества свободного места.

    Преимущества

    Состав бумажных батарей – та особенность, что отличает их от стандартных батарей. Бумага распространена повсеместно и окупает сама себя, что делает ее дешевой. Хранение бумаги также стоит недорого, так как она – легко воспламеняющаяся и подвержена биологическому распаду. Использование бумаги делает батареи гораздо более гибкими. Такую батарею можно свернуть или обернуть вокруг предметов, вместо того, чтобы жестко их зафиксировать.

    Также, будучи тонкой и плоской, бумажная батарея легко помещается в узких участках, что уменьшает размер и вес питаемых ими устройств. Использование бумаги усиливает поток электронов, что также делает ее пригодной в промышленных отраслях. Бумага способна обеспечивать капиллярное движение в батареях для таких жидкостей, как электролиты, что устраняет потребность во внешнем насосе. Использование бумаги в батареях увеличивает площадь поверхности, которую можно использовать для реагентов. Бумага, используемая в таких батареях, может быть свернута для улучшения ее технических характеристик.

    Такие технологии нанесения рисунка, как фотолитография, батиковая набивка и лазерная микрообработка, используются для создания водоотталкивающих и влаголюбивых участков на бумаге, из которых делают дорожки для непосредственного капиллярного движения жидкостей в батареях. Схожие методы можно использовать для создания токопроводов на бумаге, что позволит разработать бумажные электрические приборы и системы накопления энергии.

    Список преимуществ:
    1. Можно использовать и как батарею, и как конденсатор.
    2. Гибкость
    3. Крайне малая толщина (для использования в накоплении энергии).
    4. Высокая прочность
    5. Нетоксичность
    6. Стабильное производство энергии.

    Недостатки

    Несмотря на крайне впечатляющие преимущества бумажных батарей, многие значимые для них компоненты, как-то углеродные нанотрубки и нанесение рисунка, достаточно сложны и дороги

    Список недостатков:
    1. Склонны к разрыву
    2. Нанотрубки из углерода – дороги из-за использования таких процедур, как электролиз и лазерная абляция.
    3. Не должны вдыхаться, так как могут нанести вред легким.

    Читайте также:
    Инвертор для солнечных батарей: виды, как выбрать

    Электролиты

    Спейсеры на основе целлюлозы совместимы со многими электролитами. Исследователи применяли ионную жидкость, по сути – жидкую соль, как электролит в батарее, а также – естественные электролиты типа пота, крови и мочи человека. Использование ионной жидкости без содержания воды должно означать, что батареи не замерзнут или испарятся, что, потенциально, позволит применять их в экстремальных температурах. Условия работы (температура, влажность, статическое давление) для таких батарей будут зависеть от физических и химических свойств электролита, а также – от долговечности целлюлозной сети. Оба фактора являются потенциальными ограничителями.

    Возможные области применения

    Схожий с бумагой вид батарей вместе со структурой из встроенных нанотрубок дает им малый вес, низкую цену и возможность использования в портативной электронике, авиации, автомобилестроении и игрушках (к примеру, авиамоделях).

    Батареи с использованием нанотрубок в теории могут показывать замедление выхода на рынок из-за чрезмерной дороговизны. Выход на рынок также требует более крупных устройств. К примеру, устройство размером с газету может быть достаточно мощным для питания целого автомобиля.

    Бумагу можно включить в несколько различных видов батарей, например, электрохимические батареи, микробные топливные элементы, ионно-литиевые батареи, ионисторы и наногенераторы.

    Электрохимические батареи

    Электрохимические батареи можно переделать для использования бумаги. Как правило, такая батарея использует два металла, размещенных в двух отдельных камерах и соединенных мостом или мембраной, где возможен обмен электронами между металлами с последующим производством энергии. Бумагу можно включить в состав электрохимических батарей за счет размещения электрода на бумаге или использования бумаги для хранения жидкости, включающей батарею.

    Также в электрохимических батареях можно использовать бумагу с нанесенным рисунком. Это происходит для того, чтобы батарею можно было использовать вместе с электроникой на бумаге. Такие батареи склонны вырабатывать ток низкого напряжения и работать в короткие периоды, но их можно соединить в цепь для увеличения выхода и емкости. Бумажные батареи такого типа можно активировать при помощи жидкостей тела человека, что делает их крайне полезными в здравоохранении, например, при использовании одноразовых медицинских изделий или тестов для определенных болезней. Батареи такого типа должны разрабатываться с более долгим сроком службы для питания систем у постели больного.

    Устройства с бумажными батареями, где магниевая фольга применяется как анод, а серебро – как катод, используются для обнаружения у пациентов таких диагнозов, как рак почек и печени, а также – остеосаркома. Бумага с рисунком, который был нанесен при помощи батиковой набивки, может быть легко заменена. Более того, такая батарея была разработана при низких расходах и получила применение во многих других отраслях.

    Ионно-литиевые батареи

    Бумага, которую можно использовать в ионно-литиевых батареях, может быть как обычной, так и со вставками из одностенных углеродных нанотрубок. Улучшенная бумага используется и как электрод, и как сепаратор, что приводит к появлению прочной и гибкой батареи с отличными техническими характеристиками (большое число циклов зарядки-разрядки, высокий КПД, хорошая реверсивность). Использование бумаги в качестве сепаратора куда эффективнее, чем использование пластика. Однако, процесс улучшения бумаги может быть сложен и дорог, в зависимости от используемых материалов. Углеродные нанотрубки и пленка из серебряной нанопроволоки могут использоваться для покрытия обычной бумаги и создания более простых и дешевых сепараторов или запасных частей.

    Проводящая бумага также может использоваться для замены стандартных металлических соединений. Получившаяся батарея работает хорошо, при этом упрощается процесс производства и падает ее цена. Ионно-литиевые бумажные батареи – гибки, долговечны, перезаряжаемы и производят куда больше энергии, чем электрохимические батареи. Несмотря на эти преимущества, все еще существует ряд недостатков.

    Чтобы бумагу можно было включить в состав ионно-литиевой батареи, необходимы методы комплексного наслаивания и изоляции, чтобы батарея работала, как нужно. Причина – в том, что эти сложные методики используются для укрепления бумаги, чтобы она не рвалась так быстро. Это вносит свой вклад в общую прочность и гибкость батареи. Такие методы требуют времени, навыков и дорогостоящих материалов. К тому же, отдельные материалы не являются экологически чистыми и нуждаются в отдельных условиях хранения. Бумажные ионно-литиевые батареи лучше всего могут подойти для областей, требующих большое количество энергии на долгое время. Они могут состоять из углеродных нанотрубок и мембраны на основе целлюлозы, и показывать хорошие результаты, но за счет высокой цены.

    Другие исследователи успешно использовали копировальную бумагу, сделанную из пиролизованной фильтровальной бумаги. Бумагу помещают между электродом и катодом. Использование копировальной бумаги в качестве промежуточного слоя в серно-литиевых батареях улучшает КПД и емкость батареи. Копировальная бумага увеличивает площадь контакта между катодом и электродом, обеспечивая лучший поток электронов. Поры в бумаге позволят электронам легко перемещаться, предотвращая контакт между анодом и катодом. Это приводит к большей мощности, емкости батареи и стабильности цикла (улучшения по сравнению с обычными литиево-серными батареями). Копировальная бумага сделана из пиролизованного бумажного фильтра – недорогого в производстве материала, который работает как бумага с многостенными углеродными трубками, используемой в качестве батареи.

    Биохимические топливные элементы

    Биохимические топливные элементы работают по принципу, схожему с принципом электрохимических батарей, за тем исключением, что используются такие компоненты, как сахар, спирт, пируват и соли молочной кислоты вместо металлов для облегчения окислительно-восстановительных реакций и производства энергии. улучшенная бумага используется для хранения и разделения анодов и катодов в биохимическом топливном элементе. Подобный элемент запускается гораздо быстрее, чем стандартный биохимический топливный элемент, так как бумага с порами способна впитывать положительно заряженное биотопливо и улучшать прикрепление бактерий. Подобная батарея способна вырабатывать значительное количество энергии после включения с помощью широкого спектра жидкостей, после чего их удаляют. В этом плане необходим важный прогресс, так как некоторые компоненты – токсичны и дороги.

    Естественные электролиты могут позволить биологически совместимые батареи для применения в телах. Исследователь описывал бумажные батареи, как «способ питания малых устройств типа кардиостимуляторов без использования вредных химикатов – как те, что встречаются в батареях – внутри тела».

    Их способность использовать электролиты в крови делает их потенциально пригодными для таких медицинских изделий, как кардиостимуляторы, диагностическое оборудование и трансдермальные пластыри для доставки препаратов. Немецкая фармкомпания «KWS Microtech» применяет материалы для подпитки прибора для проверки температуры кровотока.

    Ионисторы

    Технология бумажных батарей может использоваться в ионисторах. Ионисторы работают и производятся почти так же, как и электрохимические батареи, но, в большинстве своем, способны выдавать лучшие характеристики и перезаряжаться. Бумага или ее улучшенный аналог можно использовать для разработки тонких и гибких ионисторов, которые гораздо дешевле. Бумага, где вмонтированы углеродные нанотрубки, используется чаще обычной бумаги из-за большей прочности и возможности более легкого перехода электронов между двумя металлами. Электролит и электрод размещены на бумаге, которая становится основой для гибкого бумажного ионистора, способного конкурировать со многими современными аналогами. Бумажный ионистор может отлично подойти для цепей с высокой нагрузкой.

    Читайте также:
    Воздушный тепловой насос: как выбрать и собрать своими руками

    Наногенераторы

    Наногенераторы – новейшие устройства, преобразовывающие механическую энергию в электричество. Бумага желательна, как компонент в наногенераторах по тем же причинам, что были описаны выше. Подобные устройства способны улавливать движение (как-то движение тела) и преобразовывать ее в электроэнергию, способную питать, например, светодиоды.

    История обыкновенной батарейки

    Эта музыка будет вечной

    если я заменю батарейки

    Слово «батарея», происходящее от французского слова «batterie», настолько давно вошло в русский язык, что точный словарный перевод по степени очевидности вызывает в памяти бессмертные строчки из Чехова: – «Волга впадает в Каспийское море, лошади кушают овес и сено». Вот сами посудите, это строчка из русско-французского разговорника:

    фр. batterie (сущ.) – батарея.

    Только серьезно задавшись целью выяснить этимологию этого слова, через некоторое время можно добраться до объяснения, что batterie – это battre «бить» – соединение нескольких однотипных приборов, устройств в единую систему или установку для эффективного совместного действия. Название происходит от артиллерийской батареи, как исторически первого типа батарей. Впоследствии название стало употребляться для обозначения соединения однотипных предметов вообще.

    Кстати, отсюда вытекает то, что в быту мы в общем-то неправильно называем батареями пальчиковые элементы питания, потому что они – сюрприз – одиночные гальванические элементы.

    Итак, наш пост про гальванические элементы, иначе именуемые батарейками.

    Быстренько пробежимся по истории. Хотя в последнее время археологи стали утверждать, что что-то похожее на химические источники тока появились в Мессопотамии за 100 лет до н.э. (так называемая Багдадская батарейка), но это все на уровне гипотезы, а официальное рождение батареи относят к 1800г, когда итальянский физик Алессандро Вольта, основываясь на опытах итальянского врача и анатома Луиджи Гальвани, сделал устройство, получившее впоследствии название «вольтов столб». Сложив стопку высотой полметра из пластинок цинка, меди и войлока, смоченного раствором серной кислоты, Вольта, приложив руки к концам стопки, получил весьма чувствительный удар током. Так началась электрическая эра.

    Изобретение Алессандро Вольта произвело фурор в обществе, Вольта осыпали почестями и наградами, его именем назвали единицу электрического напряжения. Свою долю славы получил и Луиджи Гальвани – в честь его электрохимический элемент, изобретенный Вольта, называется гальваническим (несколько парадоксально, конечно).

    Для легкости понимания давайте вспомним немного сведений из школьной программы про гальванический элемент. Я, естественно, не помнил, поэтому пришлось читать. Прочел, осмыслил длинную нудную фразу и пересказываю более простыми словами: гальванический элемент – это источник электрического тока, основанный на химической реакции двух металлов (или их оксидов для удешевления/простоты использования), один из металлов, именуемый анодом, всегда более активный, чем второй, называемый катодом, эти металлы помещены в токопроводящую среду, именуемую электролитом, при соединении этих металлов проводником образуется электрическая цепь и начинает вырабатываться ток, который бежит от анода (-) к катоду (+).

    (Перечитав) Ну, тоже длинно, но хоть более-менее понятно.

    Гальванические элементы делятся на два типа – первичные и вторичные. Первичные напрямую преобразуют химическую энергию, содержащуюся в реагентах гальванического элемента, в электрическую энергию. Этот процесс идет до полного расхода реагентов, после чего выработка электричества прекращается. Проще говоря, это одноразовые элементы. Все батарейки являются первичными гальваническими элементами.

    Вторичные гальванические элементы – элементы, в которых электрическая энергия от внешнего источника тока превращается в химическую энергию и накапливается, а затем, при необходимости, химическая энергия снова превращается в электрическую. Эти вторичные элементы называются аккумуляторами. Про аккумуляторы мы опустим, эта обширная тема достойна отдельной большой статьи.

    Одним из первых гальванических элементов, которым можно было пользоваться вне лабораторий, был изобретен Жоржем Лекланше в 1866 году. Конструкция имени Лекланше проста – цинковый анод, катод из диоксида марганца с углем, размещенные в электролите из хлорида аммония, т.е. соли аммония. В течении некоторого времени элемент Лекланше претерпел изменения: цинковый анод стал делаться в виде цинкового стаканчика, в стаканчике размещен катод из смеси диоксида марганца и графита, в центре катода находится угольный стержень, являющийся токосъемником (в некоторых источниках именно он неправильно называется катодом), катод окружен электролитом из хлорида аммония с добавкой хлорида цинка, только не в жидком виде, как у Лекланше, а в загущенном, в виде геля, из-за добавления крахмала и муки. Это необходимо для того, чтобы электролит не мог вытечь или высохнуть при хранении и эксплуатации элемента. Элементы с загущенным электролитом получили название «сухие батареи».

    А вот сейчас, между прочим, вы прочли описание классической конструкции солевого гальванического элемента, по такой технологии он производится уже 150 лет без особого изменения. Получается как-то не очень хорошо с темпами развития науки в смежных областях – в отличие от бурного, взрывного роста возможностей электроники, за 60 лет уменьшившее компьютер MARK-1 весом 5 тонн и площадью 60 кв.м до микросхемы весом в доли грамма и площадью с булавочную головку, причем с намного большими возможностями, и этот хайтек питает энергией древняя двухсотлетняя технология. Печально. А что еще грустно, фирмы, выпускающие элементы питания, не испытывают никаких иллюзий в появлении прорывных, революционных технологий производства портативных источников тока и откровенно говорят, что в ближайшем и даже не очень ближайшем будущем нас ожидает только постепенное улучшение характеристик батарей. Понемногу, по проценту – по полпроцента в год.

    Разумеется, какие-то всплески на плавном растущем графике улучшения характеристик были. И одним из всплесков было появление щелочных батарей.

    Щелочная, она же алкалайновая (алкалиновая) батарея.

    Впервые щелочные батарейки выпустила компания Eveready (ныне Energizer) в 1959г. Принцип ее работы практически идентичен принципу работы солевой батареи – анод из цинка, катод из диоксида марганца, единственное отличие в составе электролита – он не из соли аммония, как в солевой, а из раствора щёлочи, обычно гидроксида калия. И конструкция элемента отличается – она, так сказать, вывернута наизнанку по сравнению с конструкцией солевого элемента. У солевого элемента анод в виде цинкового стаканчика, заполненный катодом в виде диоксида марганца, разделенным электролитом из соли аммония, а у щелочной батареи анод в виде пасты из цинкового порошка в смеси с электролитом находится внутри катода из смеси диоксида марганца с графитом. Анод и катод разделены тонким сепаратором, пропитанным электролитом, и все это располагается в стальном корпусе. Получается, что если у солевого элемента корпус (-), а центральный токоотвод (+), то у щелочного элемента все наоборот, корпус (+), а центральный токоотвод (-).

    Читайте также:
    Системы воздушного отопления: плюсы и минусы

    Такая конструкция, разумеется, сделана не просто так. Выше упоминалось, что первичные гальванические элементы преобразуют химическую энергию, содержащуюся в реагентах элемента. В солевых элементах при химической реакции расходуются все реагенты, составляющие этот элемент – анод, катод, электролит. А в щелочном элементе при химической реакции расходуется только анод и катод, электролит не расходуется. Поэтому электролита там совсем мало, и освободившееся место электролита заполнено увеличенным количеством анода и катода, что значительно увеличивает электроемкость щелочного элемента. И здесь мы плавно переходим к рассмотрению преимуществ и недостатков солевых и щелочных источников питания.

    Форм-фактор распространенных гальванических элементов

    Преимущества и недостатки солевых и щелочных элементов.

    У солевых сейчас осталось только одно преимущество – цена. Технология производства проста и вылизана до идеала уже давным-давно, стоимость реагентов и материалов низка, поэтому себестоимость очень маленькая. Но на этом преимущества кончаются и начинаются недостатки, а именно:

    Маленькая емкость. В среднем емкость солевого элемента в 3-5 меньше, чем у щелочного. К тому же это при малой и средней нагрузке, при высокой нагрузке (мощные фонари, фотоаппараты и видеокамеры) разница в емкости еще больше увеличивается и достигает 10. Т.е., к примеру, солевая батарейка питает маломощный прибор, скажем, 10 дней, а щелочная 10*3=30 дней; такая же солевая батарейка обеспечит энергий фотоаппарат со вспышкой в течение 10 минут, а такая же щелочная 10*10=100 минут.

    Маленький срок хранения. У солевого элемента – 2 года, у щелочного – 7-10 лет. Срок хранения солевой батареи можно увеличить, если держать ее в холодильнике, при низкой температуре химические реакции, при которой происходит саморазряд, замедляются. Для щелочных элементов температура хранения некритична.

    Узкий температурный диапазон эксплуатации. Солевые батареи вообще не могут работать при отрицательных температурах, а щелочная при -20 °С отдает такую же емкость, как солевая в режиме беспрерывного разряда при комнатной температуре.

    В последние несколько лет в продаже появились новый тип элементов – литиевый. Принцип действия все так же похож на принцип солевого и щелочного элемента, но анод изготовлен из лития или его соединения. Из химии известно, что литий имеет наивысший отрицательный потенциал по отношению к остальным металлам, соответственно, он имеет наибольшее номинальное напряжение при минимальных размерах. И другие параметры тоже превосходные –очень большое время хранения (до 15 лет), исключительно малые токи саморазряда и высокая степень герметичности, хранение и работа в широком диапазоне отрицательных и положительных температур. Но цена, цена.

    Некоторые советы от опытных пользователей касательно батареек.

    Не надо стремиться покупать элементы известных фирм, которые на слуху благодаря навязчивой рекламе. Ведь рекламный бюджет надо отбивать, и расходы на рекламу включаются в цену товара. Да, высокотехнологичная батарейка может оказаться самой долгоиграющей, но ее цена взлетает в небеса; две же обычные батарейки по емкости спокойно перекрывают одну супербатарейку, и к тому же стоимость двух обычных оказывается дешевле, чем одной именитой. На одном сайте был проведен большой тест батареек различных фирм, там посчитали комплексный параметр цена/емкость, и в результате тестов лидером отказалась безымянная батарейка, продающаяся в гипермаркете Ашан, ее ватт мощности оказался самым дешевым, оставив далеко позади именитые фирмы. А известная история с батарейками фирмы «Космос», появившиеся в продаже несколько лет назад, покупатели, которые купили эти батарейки, с удивлением и даже некоторым шоком отмечали, что эти батарейки ничуть не хуже, а зачастую и существенно лучше грандов, при цене на порядок ниже.

    Севшие солевые батарейки можно восстановить. Делается это двумя способами – обстукиванием корпуса батарейки и зарядкой (да, солевые перезаряжаются) током специальной формы. Обстукивание – самый простой способ восстановления. Суть – под ударной нагрузкой с цинкового анода стряхиваются продукты реакции, налипшие на анод и препятствующие дальнейшей реакции. Стучать надо без особого фанатизма, иначе рискуешь повредить корпус, и электролит вытечет. Перезаряжать – сложнее, здесь требуется «умная» зарядка, которая стоит дорого и не везде продается, и тоже существует риск повреждения элементов.

    За пределами поста осталось много интересных элементов (воздушно-цинковые, ртутные, серебряные и т.д.), описание их категорически не влезает в отведенный объем. Но все это перепевы классического гальванического элемента, изобретенного почти 200 лет назад. Выше упоминалось, что фирмы, производящие источники тока, особых прорывов не ожидают. Но интересно же заглянуть за горизонт? И ученые уже предлагают совсем иные принципы работы источников питания для все увеличивающихся в размере и количеству носимых нами гаджетов. Перечислю некоторые научные проекты: преобразование тепла человека в электричество с помощью стеклоткани, канализирование света с помощью фотоэлектрических органических ячеек, преобразование лактатов из человеческого пота в электричество с помощью «биотатуировки». Интересно, что же из этого выстрелит?

    Эволюция аккумуляторов: от эбонита к графену

    Сегодня мы отправимся в увлекательную историю развития аккумуляторов, батарей и элементов питания.

    Человечество никогда не стояло на месте. С древних времен наших предков интересовал целый спектр всевозможных физических и химических явлений. Ученые постоянно открывали что-то новое. Такое ноу-хау, как правило, сперва напрочь отрицалось наукой, затем о нем забывали, а спустя несколько десятилетий, уже забытого всеми ученого восхваляли и называли «человеком, который изменил мир». Наверняка вы читаете эти строки с устройства, работающего от розетки или имеющего в своем распоряжении один из важнейших элементов – аккумулятор. И если бы 2 700 лет назад древнегреческий философ Фалес не обратил внимание на взаимодействие шерсти и янтаря, если бы в 1600 году не был введен термин электричество, а в 1800 Аллесандро Вольта не заинтересовался пластинами из цинка и меди, возможно современный мир был намного скучнее.

    С чего все началось

    Наука средневековья – весьма спорное и запутанное явление. Тем не менее, именно существование целого ряда схоластических теорий породило такое понятие, как научно-технический прогресс. До появления первых аккумуляторов пройдет еще более 2,5 тысяч лет, а пока в солнечной Греции дочь философа Фалеса безуспешно пытается очистить янтарное веретено от мелких частичек ворса, ниток и пыли. Как оказалось, смахнуть их не так-то просто.

    Во время правления английской королевы Елизаветы I (1533 – 1603) ее лейб-медик Вильям Гильберт Колчестерский всерьез заинтересовался устройством компаса, магнитами, янтарем и прочими драгоценными камнями, которые после натирания мехом притягивали к себе мелкие частички пергамента. Становилось понятным, что несмотря на определенную схожесть, магнетизм и электричество (термин, введенный самим Гильбертом) имеют совершенно разную природу. Магнит способен притягивать исключительно железо, в то время как электричество, вызванное трением, способно к притяжению частичек неметалического происхождения.

    Читайте также:
    Аккумулятор для солнечных батарей: какой лучше выбрать

    Понятие «притяжение» в средневековье относили к категории «магнитов». Все дополняющие друг-друга явления, вроде ветра и мельницы, солнца и тепла, мужчины и женщины относили к магнитам. Ненависти собак и кошек, друзей и врагов, льда и огня приписывали категорию «феамидов», а в магнетизме это понятие подтверждалось северным и южным полюсами магнита. С появлением электричества «магниты» и «феамиды» станут знакомы по маркировкам «плюс» и «минус», которые можно найти на любом аккумуляторе.

    В последующих опытах бургомистра Отто Фон Герике в качестве источника электричества использовался шар из серы. Во время вращения его придерживали руками, а скапливающийся электрический заряд передавался металлическому бруску, который в последствии назовут «лейденской банкой» – главный атрибут престижной средневековой лаборатории, который и стал прообразом современного аккумулятора.

    После введения понятия электричество в 1600 году и вплоть до начала XIX века по Европе прокатилась буря опытов, связанных с изучением материалов, способных вызывать так называемый «универсальный временный магнетизм». Тем временем во Франции проводил свои эксперимент ученый, имя которого навсегда осталось нераздельно связанным с любым электрическим прибором.

    Великий Вольт

    Желая понять природу электричества и в прямом смысле слова «почувствовать его вкус», Алессандро Вольта экспериментировал с монетами, изготовленными из разных металлов. Положив одну из них на язык, а другую под, и соединив их проволокой, Вольта отмечал присутствие характерного кисловатого привкуса. Так острота вкусовых рецепторов человека привела к открытию гальванического электричества, явления, которое еще в середине XVIII века описывал итальянский врач, анатом и физик Луиджи Гальвани, проводя опыты по препарированию лягушек.

    Следующим шагом стало конструирование первой электрической батареи, принцип работы которой заключался в погружении медных и цинковых пластин, соединенных последовательно, в раствор кислоты. Изобретение первого химического источника тока, полученного в лабораторных условиях, принято датировать 1798 годом, а его автором стал Аллесандро Вольта.

    В течение последующих пяти лет в области исследования гальванических батарей начнется настоящий ажиотаж. 1801 год ознаменовался появлением кратковременного источника питания. Проводя опыты, Готеро (франц. физик), используя воду, платиновые электроды и ток, доказал, что даже после прекращения подачи тока, электроды продолжают излучать электричество. Два года спустя, немецкий химик Иоганн Риттер, заменив платиновые электроды на медные и сформировав из них цепочку пластин, переложенных кусками сукна, сконструировал первый вторичный элемент питания – иными словами, первую аккумуляторную батарею, способную сперва накапливать заряд, а потом постепенного его отдавать без участия «гальванической подпитки».

    Пятьдесят медных кружков, смоченной в соленом растворе сукно и вольтов столб положили начало эры аккумуляторов с возможностью многократного цикла заряд-разряд. Появляется новая наука – электрохимия. Начатые в 1854 году немецким врачом Вильгельмом Зингстеденом опыты по использованию свинцовых электродов и их поведению в серной кислоте, спустя пять лет вылились в знаменательное открытие французского инженера Гастона Планте. В 1859 году Планте проводил исследования с листовым свинцом, свернутым в трубочку и разделенным полосами сукна. При погружении в подкисленную воду и под действием тока, свинцовые пластины покрывались активным действующим слоем. Многократное пропускание тока приводило к постепенному росту емкости первой свинцово-кислотной батареи, но рутинное осуществление этого трудоемкого процесса (на изготовление требовалось около 500 часов) приводило к росту конечной стоимости аккумулятора. Более того, потенциальный заряд аккумулятора был сравнительно невелик.

    Наследие Зингстедена и Планте будет усовершенствовано через 23 года ученным Камиллом Фором, пересмотревшим процесс изготовления используемых в аккумуляторе пластин. Ускорить формирование активного слоя стало возможным благодаря покрытию пластин окислами свинца. Под действием тока вещество превращалось в перекись, а полученные окислы приобретали пористое строение, способствующее аккумулированию газов на электродах.

    Параллельно с разработкой и совершенствованием свинцово-кислотных батарей велась работа и над построением «влажных» элементов Лекланше и их преемников угольно-цинковых аккумуляторов, предложенных в 1888 году Карлом Гасснером и использующихся вплоть до сегодняшнего дня.

    В течение длительного периода времени аккумуляторы, электрохимия и все, что было связано с использованием кислых сред, пластин и гальванического электричества будоражило умы исключительно ограниченного круга – ученых, физиков, химиков и врачей. Ситуация кардинально изменилась с появлением в 1827 году динамо-машины – первого электрического генератора постоянного тока. Эволюция генераторов, в свою очередь, подталкивала развитие аккумуляторов и батарей. Узкопрофильные опыты Вольта наконец начали получать промышленное применение.

    Промышленная эра аккумуляторов

    В 1896 году на территории США, в штате Колумбия открывается компания National Carbon Company (NCC). NCC становится первым предприятием специализацией которого становится серийное производство сухих элементов и батарей. В последующие сто лет Национальную Угольную компанию ждет две стадии ребрендинга: сперва NCC станет Eveready, а сегодня мы знаем ее под именем Energizer.

    Предложенный Фором метод заполнения пластин в течение продолжительного времени будет являться основой для построения практически любого типа аккумулятора. В поисках альтернативы морально устаревшему (еще по меркам конца XIX века) свинцово-кислотному аккумулятору и попытках решить две основных проблемы этого некогда революционного источника питания (огромный размер и малоэффективная емкость), в 1901 году легендарный изобретатель Томас Эдисон и Вальдмар Юнгнер одновременно патентуют несвинцовый тип батарей: никель-кадмиевых и никель-железных.

    Батарея Юнгнера состояла из положительной пластины, изготовленной из никеля. В качестве отрицательной использовался лист кадмия. Значительное повышение емкости, многократное снижение веса и неприхотливость к регулярности подзарядки не смогли выдержать практического применения в связи с дороговизной процесса изготовления никель-кадмиемых аккумуляторов. Достойной заменой стал предложенный Эдисоном никель-железный элемент, который получил имя щелочного аккумулятора.

    Развитие эры электричества, появление мощных промышленных генераторов, трансформаторов и глобальная электрификация приводит к резкому росту популярности портативных элементов питания. Щелочные батареи начинают использовать в корабле- и машиностроении, в транспорте и на электростанциях. На улицах появляются первые электромобили, а конструкторы уже успели сформировать принципы построения аккумуляторных батарей с различным вольтажом.

    В поисках идеального корпуса

    Опыты с электричеством и попытки построения первых батарей нераздельно были связаны с использованием кислоты или кислой водной среды. Любая жидкость для успешного проведения эксперимента требует соответствующий сосуд, а сбор аккумулятора – свой собственный корпус.

    В течение продолжительного времени корпус аккумуляторов изготавливался из дерева. Увы, реакции, происходящие в моменты окисления электродов, и кислотная среда батарей приводили к быстрому разрушению органической оболочки. Дерево заменяют на эбонит – каучук с большим содержанием серы, обладающий высокими электроизоляционными свойствами.

    Читайте также:
    Лопасти для ветрогенератора: изготовление своими руками

    Общепринятым стандартом, использующимся при построении составных аккумуляторов начала XX века, было формирование батареи из нескольких элементов, рабочее напряжение которого составляло 2,2 вольта. Первые «пальчиковые батареи» появились еще в далеком 1907 году. С тех пор внешне они мало в чем изменились. Аккумулятор с напряжением в 6 вольт (три элемента по 2,2 В) оставался эталонным при производстве автомобилей вплоть до начала 50-х годов. Элементы на 12 и 24 Вольта имели более узкую специализацию. В первой половине прошлого века об эстетике в машиностроении никто не задумывался, поэтому любой аккумулятор выглядел весьма неряшливо. Эбонитовый корпус с напичканными элементами и грубыми торчащими перемычками намертво заливался мастикой.

    Изобретение немецких ученых Шлехта и Аккермана и демонстрация в 1932 году процесса изготовления прессованных пластин для аккумуляторов не могло не повлиять на внешний вид батарей. В 1941 году в производство корпусов вмешивается австрийская компания Baren, проводившая серию экспериментов по разработке синтетических материалов. Через шесть лет француз Нойман предлагает конструкцию герметичного никель-кадмиевого аккумулятора. Параллельно с этим вся промышленность переходит на батареи с напряжением в 12 вольт, а синтетически полученный американской компанией Johnson Controls полипропилен становится основой для изготовления корпуса любых аккумуляторов. Они стали легче, практичнее, перестали бояться ударов и строгих ограничений при подзарядке.

    Настоящее и обозримое будущее

    Дальнейшее развитие индустрии аккумуляторных батарей движется настолько стремительно, что проследить за той чередой открытий, которые пришлись на последние пятьдесят лет практически невозможно. На сегодняшний день существует более 30 разновидностей аккумуляторов при построении которых используются два различных электрода, чем и определяется их название: никель-цинковые, литий-титанатные, цинк-хлорные. Среди этого обилия в быту мы сталкиваемся лишь с несколькими.

    Причина, по которой мобильные устройства начали свою стремительную эволюцию лишь с начала 90-х годов XX века и за последние 35 лет превратились из громоздких и неповоротливых «чемоданов» в ультракомпактные плоские коробочки, кроется именно в элементах питания.

    В 1991 году компания Sony выпускает первый литий-ионный аккумулятор. Этот тип портативных батарей пришел на смену некогда широко использовавшимся никель-кадмиевым (Ni-Cd) и никель-металлгидридным (Ni-MH), изобретенных еще в начале прошлого века.

    Литий-ионные аккумуляторы имеют целый ряд преимуществ: они заряжаются на порядок быстрее никелевых, имеют более продолжительный срок эксплуатации и большой запас емкости. Li-ion-аккумуляторы получили широкое распространение в сфере портативной электроники, а предложенные инженерами решения позволили не только значительно увеличить максимальные токи разряда, сделавшие возможным использование этого типа аккумуляторов и в среде мощного оборудования, но и обеспечить внушительный рост емкости.

    Несмотря на то, что сегодня мы ощущаем некое отсутствие прорыва в области портативных аккумуляторов, вынуждены ежедневно подзаряжать мобильные устройства и жить в режиме «от розетки к розетке», на сложившую ситуацию можно посмотреть и с более положительной стороны.

    Одним из главных двигателей прогресса всей индустрии аккумуляторов стали попытки построения электротранспорта в начале позапрошлого столетия. Не стоит забывать, что электромобиль создан значительно раньше двигателя внутреннего сгорания. Внушительные по размеру тяжеловесные свинцово-кислотные батареи продолжают обеспечивать работу троллейбусов, трамваев, электропогрузчиков и тягачей. Бытовые инструменты с никель-кадмиевых элементов постепенно переходят на литий-ионные и литий-полимерные.

    Прорыв в сфере использования литиевых аккумуляторов осуществила и компания Tesla, запустившая производство собственной линейки электроавтомобилей (читайте в статье «Революционер индустрии. История компании Tesla»). В конце апреля 2015 года Tesla представила и аккумуляторы для дома – решение для обеспечения автономности за счет получения энергии через солнечные панели. О целесообразности и эффективности данного решения мы поговорим в следующей статье, а пока нам остается надеяться на скорейшее развитие графеновых аккумуляторов. Аккумуляторов, которые уже сегодня называют «убийцами литий-ионного чуда», способных за 8 минут подарить владельцу автомобиля 1000 километров пробега. Увы, эта страница истории пишется в настоящее время. Но долгожданный технологический прорыв близок как никогда.

    Виды батареек

    Каждый человек использует электронные устройства, у которых имеется автономный источник питания. В большинстве случаев это одноразовые элементы питания, называемые батарейками.

    Что такое батарейка

    Батарейка – это автономный гальванический элемент питания различных устройств, работающих от электрической энергии. Принцип действия батареек основан на использовании необратимой химической реакции двух металлов (или их оксидов) в электролите, сопровождающейся появлением электродвижущей силы. Из-за необратимости проходящих в таких источниках питания реакций, связанных с образованием электроэнергии, их называют первичными.

    Вторичные источники питания (аккумуляторы), работают с использованием тех же принципов действия, но с химическими веществами, которые могут восстанавливаться после заряда, что делает возможным их многократное использование.

    Маркировки батареек

    Согласно стандарту IEC (Международная электротехническая комиссия), маркировку гальванических источников тока делают исходя из состава электролита и активного металла, применяющихся в их конструкции.

    По этой классификации существует 5 самых распространенных типов круглых (цилиндрических) батареек: солевые, щелочные, литиевые, серебряные и воздушно-цинковые. Буква R в их обозначении означает круглую форму (от английского round).

    Солевые батарейки (R). Имеют катод из цинка, анод из диоксида марганца и электролит из хлоридов аммония и цинка. Они обеспечивают напряжение 1,5 вольта, имеют небольшую емкость, высокий саморазряд и низкий срок хранения (до 2-х лет). При низких температурах они неработоспособны.

    Солевые батарейки самые дешевые и имеют посредственные технические характеристики. В обиходе их также называют цинк-карбоновыми и угольно-цинковыми.

    Литиевая и Щелочная батарейка

    Щелочные батарейки (LR). Имеют катод из цинка, анод из диоксида марганца и электролит из гидроксида щелочного металла. Они имеют напряжение 1,5 вольта, увеличенную емкость, низкий саморазряд и большой срок хранения до 10 лет. Они сохраняют работоспособность при низких температурах до -20 градусов.

    Эти источники тока недороги, в обиходе их еще называют алкалиновыми и щелочно-марганцевыми.

    Литиевые батарейки (CR). Имеют катод из лития, анод из диоксида марганца и органический электролит. Они имеют напряжение 3 вольта, большую емкость, малый саморазряд и большой срок хранения до 10-12 лет. Они сохраняют работоспособность при низких температурах до -40 градусов. Эти источники тока довольно дороги.

    Серебряные батарейки (SR). Имеют катод из цинка, анод из оксида серебра и электролит из гидроксида щелочного металла. Они имеют напряжение 1,55 вольта, высокую емкость, малый саморазряд и длительный срок хранения до 10 лет. Они сохраняют работоспособность при низких температурах до -30 градусов. Как правило, применяются в часах. В обиходе их также называют серебряно-цинковыми.

    Воздушно-цинковые элементы (PR). Имеют катод из цинка, анод из кислорода и электролит из гидроксида щелочного металла.

    Читайте также:
    Как сделать ветряной генератор для дома своими руками?

    Эти источники тока являются самыми чистыми с точки зрения экологии, благодаря чему широко используются в специальных медицинских устройствах, но имеют самый малый срок эксплуатации (несколько недель после вскрытия упаковки). Они имеют среднюю стоимость, имеют напряжение 1,2-1,4 вольта и очень высокую емкость (больше, чем у литий-ионных элементов в 2-3 раза), сохраняют работоспособность при температурах от -20 до +35 градусов.

    При хранении такие элементы нужно герметизировать для предотвращения саморазряда. При соблюдении правильных условий хранения (обеспечение герметичности) они имеют низкий саморазряд и могут храниться несколько лет.

    Типы батареек по размеру и их обозначения

    В настоящее время в мире очень большое распространение получила система обозначений батареек, принятая в США. Она основана на физических размерах источников питания. Далее рассматриваются самые распространенные из них.

    Название Маркировка и Тип Диаметр, мм Высота, мм Емкость, мАч*
    A Солевая (R23)
    Щелочная (LR23)
    17 50 н/д
    AA Солевая (R6)
    Щелочная (LR6)
    Литиевая (FR6)
    14,5 50,5 1100-3500
    AAA Солевая (R03)
    Щелочная (LR03)
    Литиевая (FR03)
    10,5 44,5 540-1300
    AAAA Щелочная (LR8D425) 8,3 42,5 625
    B Щелочная (LR12) 21,5 60 8350
    C Солевая (R14)
    Щелочная (LR14)
    26,2 50 3800-8000
    D Солевая (R20)
    Щелочная (LR20)
    34,2 61,5 8000-19500
    F Солевая (R20)
    Щелочная (LR20)
    33 91 н/д
    N Солевая (R1)
    Щелочная (LR1)
    12 30,2 1000
    1/2AA Солевая (R14250) 14,5 25 250
    R10 Солевая (R10) 21,5 37,3 1800

    * Технологии развиваются очень быстро из-за этого не сегодняшний день емкость может быть выше, чем указана в таблице (2018 год)

    Далее будут более подробно рассмотрены типоразмеры батареек и их характеристики.

    Батарейки таблетки

    Это дисковые источники тока круглой формы, так же их называют монетки или кнопуи. Существует много разновидностей батареек такого типа, основными из которых являются:

    1. Литиевые элементы CR с типоразмерами от 927 и до 3032 (где первые одна или две цифры – диаметр в миллиметрах, а последние две цифры – толщина, в десятых, долях миллиметра) на 3 вольта.
    2. Щелочные специальные дисковые элементы LR (типоразмеры 43, 44, 54) на полтора вольта для часов и миниатюрных устройств.
    3. Дисковые батарейки SR типоразмерами от 41 до 932 с оксидом серебра для часов на 1,55 вольта.
    4. Воздушно-цинковые PR элементы типоразмеров 5, 10, 13, 312, 630 и 675 на 1,2 вольта.

    Виды популярных батареек

    Большую популярность, благодаря высокой емкости и удобству, применения завоевали цилиндрические батарейки. Рассмотрим самые популярные из них, имеющиеся в продаже.

    AA. Это один из самых распространенных видов цилиндрических батареек на полтора вольта размером 14,5х50,5 мм. Они обозначаются по стандарту IEC как LR6 (щелочные), R6 (угольно-цинковые), FR6 (литиевые). В обиходе называются пальчиковыми.

    AAA. Это очень распространенные источники тока на 1,5 вольта размером 10,5х44,5 мм. Маркируются LR03 для щелочных элементов и аналогично элементам АА для других видов батареек (R03, FR03 и так далее). В просторечии называются мизинчиковыми батарейками.

    Тип C. Элементы R14 и LR14 на 1,5 вольта бывают солевыми и щелочными. В просторечии называются средними. Они имеют размер 26,2х50 мм и по длине примерно равны батарейкам АА, из-за чего иногда заменяются ими при использовании специальных накладок.

    Тип D. Обозначаются LR20 (щелочные), R20 (солевые). Имеют размер 34,2х61,5 мм и большую емкость 8000-12000 мАч. В народе эти батарейки называются «большими» или «бочонками». Это самые первые батарейки на 1,5 вольта, которые начали выпускаться еще в 1898 году для фонариков.

    PP3. По классификации IEC обозначаются 6LR61 (щелочные), 6F22 (солевые) и 6KR61 (литиевые). В обиходе эти батареи называются «Крона». Они имеют размеры 48,5х26,5х17,5 мм, напряжение 9v, емкость от 400 (солевые) до 1200 мАч (литиевые).

    Конструктивно являются объединением в одном корпусе шести (солевых или щелочных) или трех (литиевые) элементов.

    Экзотические типы батареек

    A. Это солевые батарейки цилиндрической формы на полтора вольта, обозначающиеся R23 по стандарту IEC. Они имеют размер 17х50 мм и были популярны в старых моделях ноутбуков и нестандартных устройствах. В настоящее время практически не применяются.

    AAAA. Это щелочные цилиндрические минибатарейки LR61 на полтора вольта размером 8,3 на 42,5 мм. Применяются в тонких фонариках (в виде ручки), глюкометрах, лазерных указках и мощных стилусах.

    Тип B. Выпускаются солевые R12 и щелочные LR12 цилиндрические элементы этого типа размером 21,5х60 мм на 1,5 v. Обычно применяются в фонариках.

    Тип F. Эти полторавольтовые источники питания обозначаются L25 и LR25. Они имеют емкость от 10,5 (солевые) до 26 (щелочные) А/ч. Имеют размер 33х91 мм.

    Тип N. Батарейки R1 и LR1 имеют емкость 400-1000 мАч, вольтаж – 1,5 вольта, размер 12х30,2 мм.

    1/2AA. Обозначаются CR14250 для литий-диоксидмарганцевых (Li‑MnO2) на 3 вольта и ER14250 для литий-тионилхлоридных (Li‑SOCl2) батареек на 3,6 вольта. Имеют размеры 14х25 мм.

    R10. Это элементы питания на полтора вольта, которые выпускались в СССР под маркировкой 332. Имеют размер 21х37 мм. В настоящее время они выпускаются очень ограниченно.

    Существуют батареи с маркировкой 2R10 размерами 21,8х74,6 мм на 3 вольта, называемые Duplex из-за того, что они внутри содержат два последовательно соединенных элемента R10 по 1,5 вольта.

    A23. Это щелочная батарея (по классификации IEC — 8LR932) на 12 v размером 10,3х28,5 мм. Обычно состоит из 8 элементов LR932, соединенных последовательно. Применяется для изделий, управляющихся по радио.

    A23 и A27

    A27. Это щелочная батарея (по классификации IEC — 8LR732) на 12 v размером 8х28,2 мм. Обычно состоит из 8 элементов LR632, соединенных последовательно. Применяется для изделий, управляющихся по радио, электрозажигалках и электронных сигаретах.

    Широкое распространение в различных устройствах также имеют плоские батареи на 4,5 и 9 вольт.

    3336. По стандартам IEC обозначаются 3LR12 (щелочные), 3R12 (солевые) В обиходе имеют название «квадратные». Они выпускаются с 1901 года для фонариков. Имеют напряжение 4,5 вольта, емкость от 1200 до 6100 мАч, размер 67х62х22 мм. Конструктивно представляют собой 3 последовательно соединенных элемента R12, объединенных в одном корпусе.

    Большое обилие источников питания, имеющихся в продаже, позволяет с легкостью подобрать необходимую батарейку для каждого конкретного случая. При этом лучше ориентироваться на известные бренды, которые выпускают продукцию хорошего качества, стоящую потраченных денег.

    Если Вы обнаружили, что какой-то батарейки не хватает, то напишите пожалуйста ее маркировку в комментариях и мы ее обязвтельно добавим.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: