Пластинчатый теплообменник: разновидности, схема работы

Что такое пластинчатые теплообменники

Теплообменник — техническое устройство, в котором осуществляется теплообмен между двумя средами , имеющими различные температуры, причем эти среды, холодные и горячие, никогда не встречаются и не смешиваются между собой. Среды могут быть любыми, такими как пар, вода, масло, хладагент и т. д.

Основные виды, которые вы можете встретить:

  • Пластинчатый теплообменник
  • Кожухотрубчатый (кожухотрубный) теплообменник
  • Двухтрубный теплообменник вида «труба в трубе»

В этой статье подробно поговорим о пластинчатых теплообменниках, рассмотрим конструкцию, область применения и принцип работы.

Первоначальная идея пластинчатых теплообменников была запатентована во второй половине 19 века, а первая известная конструкция была представлена в 1923 году доктором Ричардом Селигманом, главой компании Aluminium Plant and Vessel Company Ltd.(Алюминиевый завод и Судостроительная компания) известной сегодня как APV. Самый первый пластинчатый и рамный теплообменник был сконструирован из литых пластин из пушечной бронзы и заключен в раму, которая установила стандарт для современных компьютерных тонких металлических пластинчатых теплообменников, известных во всем мире. Базовая конструкция осталась неизменной, но постоянные усовершенствования позволили повысить рабочее давление в современных машинах с 1 до 25 атмосфер

Пластинчатые теплообменники применяются в различных сферах, включая: пищевую и химическую промышленность, системы нагрева технических и пищевых жидкостей, охлаждение промышленного оборудования, для подключения зданий к сетям централизованного отопления и охлаждения.

Особенно широко используются в пищевой промышленности, поскольку они компактны и могут быть изготовлены в различных видах и легко чистятся. Осаждение материалов на горячих поверхностях (загрязнение) снижает тепловые и гидродинамические характеристики, требует периодической очистки (часто всего через несколько часов работы).

Многие промышленные предприятия используют пластинчатые теплообменники для таких целей, как пастеризация и утилизация отходящего тепла. Например, производственное предприятие может использовать воду для охлаждения горячего, недавно произведенного напитка. Горячий готовый жидкий продукт необходимо охладить перед розливом в бутылки, чтобы он прошел через пластинчатый теплообменник, подключенный к охлаждающему контуру чиллера(водоохлаждающая машина). Это отводит нежелательное тепло без смешивания двух жидкостей.

Пластинчатый теплообменник состоит из нескольких листов тонкого гофрированного металла (пакет пластин), образующих каналы. Прокладки находятся между пластинами и образуют уплотнение. Уплотнение предотвращает смешивание и утечку жидкостей, но они также определяют, по каким каналам может протекать каждая жидкость.

Пластинчатые теплообменники могут увеличивать или уменьшать свою нагревательную или охлаждающую способность за счет добавления или удаления внутренних пластин. Их также можно разобрать для очистки и обслуживания, кроме неразборных.

Эти аппараты могут быть :

  • разборными
  • полуразборными-
  • неразборными (сварными или паяными).

В разборных теплообменниках теплопередача состоит из ряда гофрированных пластин, установленных между рамой и прижимными пластинами, которые сохраняют расчетное давление. Для достижения наивысших тепловых характеристик и обеспечения очень близкого температурного приближения жидкости обычно проходят через теплообменник противотоком.

Полуразборные теплообменники используются, когда прокладки не подходят в качестве одной из технологических сред, а также могут выдерживать более высокое расчетное давление по сравнению с полностью разборными пластинчатыми теплообменниками. Уплотнение между пластинами на промышленной полусварной линии чередуется между лазерной сваркой и прокладками. Канал, сваренный лазерной сваркой, позволяет использовать жидкости, несовместимые с обычными прокладками, а также обеспечивает более высокое расчетное давление, чем полностью разборные пластинчатые теплообменники.

Неразборные теплообменники не имеют не имеют открытых прокладок, это цельносварной пластинчатый теплообменник, который используется, прежде всего, в нефтегазовой, химической и нефтехимической промышленности. Рама, прочно закрепленная на болтах, состоит из четырех колонн, верхней и нижней частей, а также четырех боковых панелей. Используются для решения сложных задач, связанных с агрессивными средами, экстремальными температурами и высоким давлением.

Основным недостатком этих теплообменников является то, что они не снимаются, поэтому техническое обслуживание и очистка невозможны или, по крайней мере, трудны, а количество пластин поменять нельзя, но зато гораздо меньше подвержены загрязнению и засорению и требуют лишь периодического осмотра и очистки.

Отметим такую тонкость: Поверхность пластин гофрирована для увеличения турбулентности жидкости во время перетекания в каналы.

На рисунке показаны основные параметры гофры:

Шаг гофры р ; угол шеврона β по сравнению с основным направлением потока.

Угол наклона гофрированного рисунка влияет на теплообмен и производительность:

  • Угол пластин β > 45 ° дает более высокий теплообмен с высоким давлением.
  • Угол пластин β

1. Требуемое пространство и вес меньше по сравнению с другими теплообменниками.

2. Благодаря модульной конструкции плит монтаж и установка могут быть выполнены быстро.

3. Коэффициенты теплоотдачи выше.

4. Тепловая инерция ниже , что дает более быструю реакцию и способствует точному контролю температуры.

5. Быстрая и легкая разборка для очистки и контроля.

6. Адаптация к изменяющимся условиям эксплуатации путем добавления или удаления нагревательных пластин для изменения установленного теплового потока.

Самым большим преимуществом пластинчатых теплообменников по сравнению с другими теплообменниками является их эффективность теплопередачи. Пластины, разделяющие две жидкости, тоньше по сравнению с другими материалами. Это увеличивает скорость передачи тепла и, таким образом, снижает тепловые потери, которые могут возникнуть во время передачи.

Обменники бесценны благодаря этим функциям, которые увеличивают срок службы системы. Пластинчатые теплообменники могут выполнять множество функций, таких как нагревательный элемент, охлаждающий элемент, автоматический включатель или выключатель давления.

Читайте также:
Грязевики для систем отопления – конструкция устройства и схема подключения

1. Часто механическая очистка не является предпочтительной, так как прокладки и пластины легко повреждаются в процессе очистки. Химическая очистка необходима.

2. Прокладки необходимо время от времени заменять, а это дорогостоящий элемент обслуживания.

3. Небольшие отверстия между пластинами склонны к забиванию посторонними частицами. Поэтому в процессе эксплуатации необходимо периодическое реверсирование потока. По некоторым свойствам жидкости обратный поток требуется часто. Так что это может повлиять на поток процесса.

Еще к недостаткам можно отнести, скорей не к недостаткам, а к неудобству это то что, при эксплуатации пластинчатых теплообменников, в 95 % случаев собственный персонал не имеет нужной квалификации и ничего не может поделать с чисткой, сборкой-разборкой и заменой прокладок на данном типе теплообменников, часто этот не квалифицированный персонал при замене уплотнений и промывке используют металлические щетки, чтобы сократить время мойки пластин. А это приводит к более быстрому износу и последующему прогоранию пластин.

Почти всегда приходится нанимать специализированную организацию для качественной работы или замены прокладок, поэтому необходимо оценивать состав своей ремонтной службы либо последующую готовность нести затраты на обслуживание пластинчатого теплообменника.

В славном городе Челябинске находится один из наших ключевых партнеров. Их главным преимуществом является собственное производство пластинчатых теплообменников с 2008г. Эти ребята знают про них все.

Они является сертифицированным сборочным производством и официальными дилерами немецких теплообменников Funke.Также они представляют другие бренды из Турции и Швеции.

Благодаря их большому ассортименту различных пластин, компания Квип может осуществлять ремонт теплообменников других производителей своими силами! Для того чтобы разобраться в проблеме от вас нужна спецификация вашего теплообменника.

Также есть возможность подобрать на замену те пластины и уплотнения, которые есть у заказчика.

Если проблема более серьезная, то потребуется демонтаж теплообменника и отправка его в Челябинск для диагностики и ремонта. Но это в любом случае намного дешевле, чем отправка за границу или покупка нового и это несомненно еще один плюс.

Мы регулируем пар, который подается в теплообменник.

Мы можем подобрать клапан для регулировки, шкаф, датчики и вообще собрать всю обвязку для осуществления правильной регулировки.

Не самая приятная история, но что есть, то есть. Эта история еще и связана с работой конденсатоотводчика. Мы отгрузили оборудование на один из молочных заводов Свердловской области, запустили процесс, через один теплообменник они грели воду и моющие растворы, а на другом узле молоко. Давление подающего пара в этих теплообменниках было рассчитано на 3 Бар.

В редукционном узле не был подключен клапан RP45, из-за этого давление в теплообменнике давило 5-6 Бар, как с котельной поступает, так и распределяется дальше без изменений. Максимальная эксплуатация уплотнений теплообменника 150°С, а 5-6 Бар это почти 160°С температура пара, что негативно влияет на сами уплотнения, они пересыхают, трескаются и начинается смешивание жидкостей внутри. Если вода попадает в пар это еще терпимая ситуация, а в этом случае смешивались моющие средства и продукт(молоко), происходило закисление конденсата, это в свою очередь начало разрушать и пластины, в них стали появляться “свищи”, сначала маленькие и незаметные, а потом уже прямо очень заметные. А это уже потеря потерь не только по теплу, но и по продукту.

Стали менять оборудование на конденсатной линии и добавилась проблема невозможности использования конденсата повторно. А это возможность экономии на нагреве, на водоподготовке конденсата, а по нашим расчетам это экономия до 1 миллиона рублей в месяц.

Начались упреки в нашу сторону, что мы отгрузили бракованные конденсатоотводчики. Мы конечно очень переволновались, т.к за свою продукцию отвечаем головой и уверены в ее качестве на все 100%. Собрали мощную доказательную базу, что наши конденсатоотводчики не при чем, а все дело в клапане!

Недоразумение было улажено, вопрос решился хорошо, инженеры завода все поправили, а мы и дальше сотрудничаем в мире и согласии.

Вторая история нам покажет, что внимательность и упорство дает свои плоды)

Один из наших сотрудников в годы своей юности работал на молочном заводе столкнулся со следующей ситуацией: пришло время технического обслуживания пастеризационно-охладительной установки ОКЛ-10, оно производится через определенные часы наработки. В этом теплообменнике около 250 пластин и они разбиты по секциям: подогрев, пастеризация, нормализация молока. При ослаблении резьбы на раме пластины можно растянуть, достать и помыть, что они благополучно и сделали. Сложности начались позже…., 200 с лишним пластин и у каждой свой вход/выход, собрали и ничего не работает. Надо искать ошибку, где-то неправильно установили пластину.

В итоге, чтобы разобраться и найти ошибку 3 человека потратили 2 дня, собирали в различных вариациях, сравнивали со схемой, нарисованной кем-то от руки в единственном экземпляре на весь завод, запускали и так по кругу, пока не нашли.

Вот схема ниже на фото, представляете, какая работа была проделана?

Прочитав эту статью до конца, мы надеемся, что вы узнали про пластинчатый теплообменник чуть больше.

Подписывайтесь на наш канал Телеграм, там всегда много полезного и интересного.

Пластинчатые теплообменники

Назначение

Пластинчатые теплообменники – это устройства, используемые для передачи тепловой энергии от одного (более горячего) потока к другому (более холодному) потоку через разделяющие их тонкие металлические пластины, которые стягиваются прижимными плитами, образуя единую конструкцию.

Читайте также:
Инфракрасные панели отопления: принцип работы, подключение, плюсы и минусы

Пластинчатые теплообменники повышают энергоэффективность, потому что энергия потоков, уже находящихся в системе, может быть передана в другую часть процесса, а не просто потрачена впустую. В новую эру устойчивого развития растущая настоятельная необходимость экономии энергии и снижения общего воздействия на окружающую среду сделала больший акцент на использовании теплообменников с более высокой тепловой эффективностью. В этом новом сценарии пластинчатый теплообменник может сыграть важную роль.

История

Пластинчатые теплообменники были впервые введены в 1923 году для пастеризации молока, но в настоящее время используются во многих областях применения в химической, нефтяной, климатической, холодильной, молочной, фармацевтической, пищевой и медицинской промышленности. Это связано с их уникальными преимуществами, такими как гибкая тепловая конструкция (пластины могут быть просто добавлены или удалены для удовлетворения различных требований к тепловому режиму или обработке), простота очистки для поддержания строгих гигиенических условий, хороший контроль температуры (необходимый в криогенных процессах) и лучшие характеристики теплопередачи.

Типы пластинчатых теплообменников

Пластинчатый теплообменник (ПТ) – это компактный тип теплообменника, который использует серию тонких пластин для передачи тепла между двумя жидкостями. Существует четыре основных типа ПТ:

  • разборные,
  • паяные,
  • сварные
  • полусварные.

Пластинчатый разборный теплообменник – устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения (рисунок 1).

Рисунок 1 – Разборные пластинчатые теплообменники

Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.

Конструкция разборного теплообменника

Разборный теплообменник состоит из следующих элементов:

  • пакета тонких прямоугольных пластин с отверстиями, через которые протекают два потока жидкости, где происходит теплопередача. Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
  • рамная пластина (неподвижная прижимная плита),
  • прижимная пластина (подвижная прижимная плита), прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
  • несущая база – направляющая балка, на которую надеваются пластины во время сборки агрегата.
  • опорная станина – вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).
  • верхние и нижние стержни и винты для сжатия пакета пластин.

Индивидуальный пластинчатый теплообменник может вместить до 700 пластин. Когда пакет пластин сжимается, отверстия в углах пластин образуют непрерывные туннели или коллекторы, через которые текучие среды проходят, пересекая пакет пластин и выходя из оборудования. Промежутки между тонкими пластинами теплообменника образуют узкие каналы, которые попеременно пересекаются горячей и холодной жидкостями и обеспечивают небольшое сопротивление теплопередаче.

Типовые пластины и прокладки

Пластины

Самая важная и самая дорогая часть ПТ – это его термические пластины, которые изготавливаются из металла, металлического сплава или даже специальных графитовых материалов, в зависимости от области применения.

Примеры материалов для изготовления ПТ, обычно встречающиеся в промышленном применении:

  • нержавеющая сталь,
  • титан,
  • никель,
  • алюминий,
  • инколой,
  • хастеллой,
  • монель,
  • тантал.

Пластины могут быть плоскими, но в большинстве случаев имеют гофры, которые оказывают сильное влияние на теплогидравлические характеристики устройства. Некоторые из основных типов пластин показаны на рисунке 3, хотя большинство современных ПТ используют шевронные типы пластин.

Рисунок 3 – Типичные категории пластинчатых гофр: (а) стиральная доска, (б) зигзагообразная, (в) шевронная или елочка, (г) выступы и углубления, (д) стиральная доска со вторичными гофрами, (е) косая стиральная доска.

Каналы, образованные между соседними пластинами, создают закрученное движение для жидкостей, как видно на рисунке 4.

Рисунок 4 – Турбулентный поток в каналах пластинчатого теплообменника

Угол шеврона обращен в смежных листах, так что, когда пластины затягиваются, гофры обеспечивают многочисленные точки контакта, которые поддерживают оборудование. Уплотнение пластин достигается прокладками, установленными по периметру.

Рисунок 5 – Технические характеристики пластин

Прокладки

Прокладки обычно представляют собой формованные эластомеры, выбранные на основе их совместимости с жидкостью и условий температуры и давления. Многопроходные устройства могут быть реализованы в зависимости от расположения прокладок между пластинами. Бутиловые или нитрильные каучуки – это материалы, обычно используемые при изготовлении прокладок.

Рисунок 6 – Технические характеристики прокладок

Схемы движения потоков в пластинчатом теплообменнике

Однопроходная схема

Простейшие схемы пластинчатых теплообменников – это те, в которых обе жидкости делают только один проход, поэтому нет никакого изменения направления потоков. Они известны как однопроходные схемы 1-1, и есть два типа: противоточные и параллельные. Большим преимуществом однопроходной компоновки является то, что входы и выходы жидкости могут быть установлены в неподвижной пластине, что позволяет легко открывать оборудование для технического обслуживания и очистки, не нарушая работу трубопроводов. Это наиболее широко используемая однопроходная конструкция, известная как U-образная компоновка. Существует также однопроходная Z-схема, в которой имеется вход и выход жидкости через обе торцевые пластины (рисунок 9).

Читайте также:
Теплоноситель на основе пропиленгликоля для системы отопления

Противоточный поток, где потоки текут в противоположных направлениях, обычно предпочтительнее из-за достижения более высокой тепловой эффективности, по сравнению с параллельным потоком, где потоки текут в одном направлении.

Многопроходная схема

Многопроходные устройства могут также использоваться для повышения теплопередачи или скорости потока потоков и обычно требуются, когда существует существенная разница между расходами потоков (рисунок 10).

Рисунок 10 – Многопроходный пластинчатый теплообменник

Пластины ПТ могут обеспечивать вертикальный или диагональный поток, в зависимости от расположения прокладок. Для вертикального потока вход и выход данного потока расположены на одной стороне теплообменника, тогда как для диагонального потока они находятся на противоположных сторонах. Сборка пакета пластин включает чередование пластин “а” и “в” для соответствующих потоков. Монтаж пакета пластин в режиме вертикального потока требует только соответствующей конфигурации прокладок, поскольку устройства А и в эквивалентны (они поворачиваются на 180°, как показано на рисунке 11а). Это невозможно в случае диагонального потока, для которого требуются оба типа монтажных пластин (рисунок 11б). Плохое распределение потока с большей вероятностью происходит в массиве вертикального потока.

Рисунок 11 – (a) пластина с вертикальным потоком, (б) пластина с диагональным потоком

Пластинчатые теплообменники

Купить пластинчатые теплообменники. Изготовление, сборка, тестирование и испытание пластинчатых теплообменников
производится на заводах в Швейцарии, Германии, Франции, Турции, США, Японии и Кореи

Компания в России Интех ГмбХ / LLC Intech GmbH на рынке инжиниринговых услуг с 1997 года, официальный дистрибьютор различных производителей промышленного оборудования, предлагает Вашему вниманию пластинчатые теплообменники.

Пластинчатые теплообменники: описание, назначение и принцип действия

Пластинчатый теплообменник предназначен для переноса тепла между различными средами, причем парами рабочих сред могут служить как пар-жидкость, так и жидкость-жидкость.

Теплопередающей поверхностью служат тонкие штампованные гофрированные пластины.

Теплоносители движутся в теплообменнике между соседними пластинами по щелевым каналам сложной формы. Каналы для теплоносителя, отдающего и принимающего тепло, следуют друг за другом, чередуясь.

Тонкие гофрированные пластины имеют небольшое термическое сопротивление и, кроме того, обеспечивают турбулентность потока теплоносителя, в связи с чем теплообменники такого типа обладают высокой эффективностью теплопередачи.

Герметичность каналов, по которым движутся теплоносители, и их распределение по каналам обеспечивается резиновыми уплотнителями, расположенными по периметру пластины.

Одно из этих уплотнений охватывает два отверстия по углам пластины, через которые теплоноситель входит в канал между пластинами и выходит из него. Поток встречного теплоносителя проходит транзитом через другие два отверстия, которые дополнительно изолированы кольцевыми уплотнениями. Герметичность каналов обеспечивается двойным уплотнением вокруг входных и выходных отверстий. В случае повреждения уплотнения теплоноситель вытекает наружу через специальные канавки (на рисунке показаны стрелками). Это помогает определить нарушение герметичности визуально и быстро заменить уплотнение.

Схема движения и распределения потока теплоносителей по каналу

В теплообменнике после сборки пластины стягиваются болтами до требуемого размера, при этом уплотнительные резиновые прокладки образуют системы изолированных друг от друга герметичных каналов – для греющего и нагреваемого теплоносителя. Каждая последующая пластина развернута относительно предыдущей на 180 градусов, что, создавая условия для турбулентного движения жидкости, повышает эффективность теплообмена, и одновременно служит для обеспечения жесткости пакета пластин.

Системы каналов между пластинами соединены каждая со своим коллектором и имеют каждая свои точки входа и выхода теплоносителя на неподвижной плите.
На раме теплообменника укрепляется пакет пластин.

Принцип работы пластинчатого теплообменника

Конструктивная схема пластинчатого теплообменника. Основные узлы и детали

Устройство рамы теплообменника: неподвижная плита, подвижная плита, штатив, верхняя и нижняя направляющие, и стяжные болты.

При сборке направляющие – верхняя и нижняя – сначала закрепляются на штативе и неподвижной плите. Далее, на направляющие надевается сначала пакет пластин, а затем подвижная плита. Подвижную и неподвижную плиты стягивают болтами.

Одноходовые теплообменники сконструированы таким образом, что присоединительные патрубки расположены на неподвижной плите. Для того, чтобы крепить теплообменник к строительным или технологическим конструкциям, на штативе и неподвижной плите имеются монтажные пятки.

Виды и типы пластинчатых теплообменников

Пластинчатые теплообменники делятся по конструкции и по размеру теплообменной пластины на нескольких видов.

По конструкции теплообменники делят на:

  • одноходовые;
  • двухходовые с циркуляционной линией и без нее;
  • двухходовые, выпускающиеся в виде моноблока. Используются для систем горячего водоснабжения;
  • трехходовые.

Преимущества пластинчатых теплообменников

Пластинчатые теплообменники имеют следующие преимущества по сравнению с другими видами:

Уменьшение площади, которое занимает теплообменное оборудование.

Способность к самоочищению теплообменника.

Высокий коэффициент теплопередачи.

Маленькие потери давления.

Уменьшение расхода электроэнергии.

Простота ремонта оборудования.

Небольшое время, необходимое для ремонта оборудования.

Небольшая величина недогрева.

Компактность

Основной фактор, играющий большую роль при компоновке и размещении оборудования – его компактность. Размеры пластинчатого теплообменника меньше, чем, например, кожухотрубного. Более высокое значение коэффициента теплопередачи позволяет достичь и более компактных размеров. Так, теплопередающая поверхность составляет 99,0 – 99,8% от общей площади пластины.

Далее, все подсоединительные порты находятся на его неподвижной плите, что делает монтаж и подключение теплообменника значительно более простым. Кроме того, для ремонтных работ требуется значительно меньше площади, чем при ремонте теплообменников другого типа.

Небольшая величина недогрева

Движение теплоносителя по каналам тонким слоем, высокая турбулентность его потока обеспечивает высокий коэффициент теплоотдачи. При этом гофрированная поверхность пластины дает возможность получить турбулентный поток уже при относительно небольших скоростях движения потока теплоносителя. Поэтому величина недогрева в этом случае при расчетных режимах работы достигает 1-2 оС, в то время как для кожухотрубных теплообменников в лучшем случае эта величина составляет 5-10 оС.

Читайте также:
Выбираем греющий саморегулирующийся кабель для обогрева труб

Низкие потери давления

Конструктивная особенность пластинчатых теплообменников позволяет уменьшать гидравлическое сопротивление, например, за счет плавного изменения общей ширины канала. Кроме этого, максимальная величина допустимых гидравлических потерь может быть уменьшена увеличением количества каналов в теплообменнике. В свою очередь, уменьшение гидравлического сопротивления снижает расход электроэнергии на насосах.

Небольшие трудозатраты при ремонте теплообменника

Периодические ремонты оборудования всегда связаны со сборно- разборочными работами. Демонтаж кожухотрубного теплообменника – это весьма сложное инженерное мероприятие. Для демонтировки и извлечения пучка труб необходимо использование подъемных механизмов и весь процесс разборки занимает достаточно много времени. При ремонте пластинчатого теплообменника применение подъемных механизмов не требуется. С ремонтом свободно и достаточно быстро справится бригада в 2-3 человека.

Кроме того, мощность теплообменника может быть плавно изменена увеличением поверхности теплообмена. Это его особенность важна, когда, например, при расширении производства, возникает необходимость увеличения мощности теплообменного оборудования. В этом случае достаточно, не заменяя всего теплообменника, прибавить нужное количество пластин.

Область применения

  • Охлаждение воды на промышленных ТЭС
  • В сталелитейном производстве
  • Автомобильная промышленность
  • В системах отопления, водоснабжения и вентиляции в любых зданиях применяются пластинчатые теплообменники разборного типа;
  • Пластинчатые теплообменники используются на производстве в системе душевых сеток;
  • Воду в бассейнах подогревают часто именно пластинчатыми теплообменниками;
  • Пластинчатые теплообменники служат для охлаждения жидких пищевых продуктов, гидравлического, трансформаторного и моторного масел;
  • Для систем напольного отопления используют пластинчатые теплообменники разборные;
  • Теплоснабжение небольших районов или высотных зданий обеспечивается зачастую пластинчатыми теплообменниками.

Попутная схема отопления – устройство, применение, как сделать

Попутная схема разводки отопительного трубопровода отличается тем, что является саморегулирующейся. Если она собрана правильно, то после монтажа ее настраивать не нужно. На каждом радиаторе в этой системе должна возникнуть одинаковая разница давлений между подачей и обраткой. Каждый отопительный прибор в попутной схеме работает в одинаковых гидравлических условиях.

Как устроена попутка

Одинаковая разница давлений на радиаторах возникает потому, что сумма длин подачи и обратки для каждого одинаковая. Это можно наглядно увидеть на схеме. Возьмите любую батарею из системы, и оцените суммарную длину подающего и отводящего трубопровода до котла.

Т.е. все отопительные приборы находятся в одинаковых условиях автоматически, а это именно то, что на других схемах добиваются тонкой настройкой и добиться иногда не могут. Например, сложная настройка у лучевой схемы, где каждая батарея подключена длинной парой трубопроводов к одному коллектору. Длины этих трубопроводов разные, радиаторы взаимно влияют друг на друга, поэтому систему приходится тщательно регулировать.

Диаметры трубопроводов

Желательно, чтобы диаметр магистрального трубопровода (и подачи и обратки) был бы одинаков на протяжении всего кольца, за исключением подключения последнего радиатора. Где с точки разветвления на предпоследний, можно использовать меньший диаметр, ведь это будет уже не магистраль, а отвод на последний в схеме отопительный прибор. Т.е. конечный отрезок и подачи и обратки может быть с меньшим диаметром.

Выдержка одного значительного диаметра магистралей необходима, чтобы обеспечить одинаковые условия для радиаторов. Т.е. чтобы эта «попутка» была бы сбалансированной системой, где все батареи работают стабильно в одних условиях.

Если же начать «играться» в экономию и уменьшать диаметр магистрали по ходу движения жидкости (ведь ее требуется меньше с каждым ответвлением), то очень просто сделать, так что группа последних радиаторов будет всегда холоднее, т.е. система получится сложнонастраиваемой.

Таким образом, для небольшого дома с 6 – 8 радиаторами от котла прокладывается трубопровод с диаметром 26 мм (наружный для металлопластика, для полипропилена и др. материалов — другие значения), затем до предпоследнего прибора, — 16 мм. Наоборот, для обратки, – от первой батареи 16 мм, затем от второго – 26 мм кольцо до котла.

Но это лишь пример для небольшой системы, а если дом большой, то и диаметр магистралей возможно нужен побольше, чтобы на конечных участках трубопровод не шумел, чтобы скорость в нем не превысила 0,7 м/с. Определить необходимый диаметр можно несложным подбором по подключенной мощности, пример расчета можно обнаружить и на данном ресурсе.

Всегда ли нужна попутка

Попутная система отопления подороже по сравнению с тупиковой, процентов на 20. Денежный перерасход связан с применением труб большого диаметра, и в особенности их фитингов – тройников на ответвлениях радиаторов и переходников на меньший диаметр, которым подключены радиаторы.

В тупиковой же схеме диаметры труб будут меньшими, так как вся мощность разделяется на 2 и более плечей, по выходу из котла.

Особенно громоздкой становится попутка, когда нет возможности провести трубы по кольцу по периметру дома – от выхода котла к его входу. Тогда обратку приходится возвращать тем же путем, где и уложена подача.

Получается сложная петля уже из трех магистральных трубопроводов большой толщины. Этого нужно избегать и преобразовать попутку в более простую тупиковую схему по конкретным обстоятельствам.

Читайте также:
Что такое газгольдер для частного дома - полный обзор

Обычный же переход на тупиковую систему происходит при снижении количества радиаторов до 10 и менее. Тогда появляется возможность сбалансировать радиаторы в тупиках и сами плечи без особого наращивания мощности насоса.

При наличии 3, 4 и даже 5 радиаторов в плече нет проблемы с балансировкой всех радиаторов и плечей в тупиковой схеме отопления.

А если те же десять радиаторов приходится делить по плечам как 6 и 4, — то лучше делать самонастраивающуюся попутку, так как при 6 отопительных приборах и неравнозначных тупиках придется излишне увеличивать мощность насоса и слишком «зажимать» ближе расположенные к нему батареи.

Осложнения при создании попутной системы отопления и ее настройка

Если, как рекомендовалось, диаметр магистрали трубопроводов будет одинаковым, а радиаторы будут расположены на одном высотном уровне, а также, если не будет слишком большой разницы в мощностях радиаторов, то и проблем с работой системы быть не может.

Точнее, любые проблемы типа «не греет 3-й радиатор» возникают только лишь из-за нарушений монтажа. Например, выполнена пайки полипропилена с наплывами и перекрытием внутреннего диаметра.

Но если, негативные для работы системы факторы, которые указаны выше, присутствуют, то и различия в работе радиаторов могут возникать.

  • Расположенный выше заберет больше теплоносителя.
  • Слишком мощный не сможет ее развить на максимум, а при увеличении расхода насосом, самые маленькие батареи начнут шуметь из-за большой скорости.
  • Подключенные уменьшенным диаметром трубопровода (последний не в счет), вероятней всего, не разовьют мощности, так как давление на них будет меньше.

В общем, попутка стабильная схема, но «нежная», — не стоит нарушать правил ее создания, и все будет работать как положено.

Остается лишь вопрос совмещения весьма мощных радиаторов с другими, ведь если его не решить, то система будет … не применимой вообще.

Возможно, что в оранжерее нам понадобится один отопительный прибор на 5 кВт, а в туалете – 0,5 кВт. Настраивая насос и трубопроводы под 5-киловатник, мы подадим на батарею в туалете повышенное для него давление и слишком увеличим через него скорость.

А решение конфликта мощностей все тоже, что и в плечевой схеме – балансировочные краны. Они должны стоять, по крайней мере, на самых маломощных радиаторах в попутке, защищая их от большого давления.

Но если радиаторы управляются местными термоголовками, то возможна ситуация, когда часть отключится, а какой-либо оставшийся в работе, начнет шуметь из-за увеличившегося потока. Поэтому балансировочные краны лучше ставить сразу на все приборы отопления при создании попутной схемы отопления для дома.

Остается один из главных вопросов, — а можно ли собрать попутную систему отопления дома своими руками? Конечно можно. Но нужно уделить внимание освоению также и следующих вопросов.

Выбор вида труб и их диаметра, подбор радиаторов по мощности, обвязка котла, обвязка радиатора, правильный подбор фитингов, способы монтажа, приемы и проблемы с выбранным трубопроводом, тренировка выполнения монтажа. В принципе, даже новички в слесарном деле, собирали отличные работоспособные системы отопления из современных материалов. Вероятно, что так будет и далее.

Системы с попутным движением теплоносителя

Для создания автономных систем отопления сегодня чаще всего выбирается двухтрубная разводка, которая позволяет поддерживать равномерную температуру каждого радиатора и эффективно регулировать ее. В зависимости от характера движения теплоносителя в подающей и обратной магистрали, для ее реализации может быть выбрана тупиковая (встречная) или попутная схема. Каждый из этих вариантов имеет свои достоинства и минусы и лучше подходит для определенных условий монтажа. Использование попутной схемы или петли Тихельмана в некоторых случаях представляет собой единственный способ создания эффективного и стабильно работающего отопления. Разберем характерные особенности, плюсы и минусы этой схемы двухтрубной разводки.

Как работает петля Тихельмана

Наиболее распространенной в бытовых сетях является тупиковая схема движения теплоносителя. Ее принцип действия заключается в том, что нагретая вода от котла по подающей магистрали поступает в каждый радиатор, а на выходе из контура отопительного прибора по обратной магистрали сразу направляется к отопительному котлу. Таким образом потоки воды в «подаче» и «обратке» движутся навстречу друг другу. В данном случае подающая магистраль проходит от котла до последнего прибора, а обратная магистраль — в обратном направлении, начиная от последней батареи до котла.

Принципиальной особенностью системы попутного типа является то, что и в подающей, и в обратной трубе теплоноситель движется в одном и том же направлении. Обычно такая схема используется в сетях с нижней разводкой. При этом предусматривается прокладка не двух, а трех труб:

  • подающий трубопровод;
  • обратный трубопровод;
  • трубопровод для возврата теплоносителя из обратной магистрали к котлу.

В данном случае «подача» также проходит от котла до последнего отопительного прибора. Обратная магистраль проходит от первого до последнего отопительного прибора. Таким образом теплоноситель движется по ней в том же направлении, что и по напорному трубопроводу. От последнего отопительного прибора он возвращается обратно к котлу по отдельной трубе.

Читайте также:
Как установить терморегулятор на батарею - схема установки

Для чего используется попутная схема

Попутная система отопления применяется в тех случаях, когда необходимо решить проблему сложной балансировки трубопроводной сети. Такая балансировка требуется для того, чтобы обеспечить равномерное распределение тепла между подключенными радиаторами. Чем ближе батарея расположена к котлу, тем меньшими будут в ее контуре потери давления по сравнению с контурами других батарей. Соответственно основной поток теплоносителя будет стремиться именно в этот контур. В результате в сети отопления тупикового типа возникает ситуация, когда в первом от котла отопительном приборе поддерживается слишком высокая температура, а последний радиатор оказывается слишком холодным и не может эффективно обогревать помещение.

Для устранения этого дисбаланса на каждый радиатор приходится ставить игольчатый вентиль или термостатический клапан для регулировки объема теплоносителя, подаваемого на каждый прибор. Таким образом, давление на конкретной батарее будет тем ниже, чем ближе она расположена к котлу. Однако серьезные сложности с балансировкой возникают, когда необходимо создать отопительную сеть значительной протяженности, например, если нужно обогреть двухэтажный дом. В таких случаях на первом радиаторе давление может быть занижено настолько, что теплоноситель в него просто не потечет, либо может не хватить настройки клапана. В этом случае оптимальным будет использование варианта с попутным движением теплоносителя.

Вариант с попутным движением теплоносителя дает возможность намного легче решить вопрос балансировки. Собственно, такой вопрос возникает только в том случае, если используются батареи с разными характеристиками. Если все радиаторы в системе отопления имеют одно и то же число секций и одинаковые размеры, то попутная разводка является сбалансированной изначально и не требует применения специальной регулирующей арматуры. При разном количестве секций или при разных типоразмерах установленных в системе радиаторов ее придется балансировать. Однако сделать это будет намного легче по сравнению с тупиковой схемой.

Плюсы и минусы

Главным плюсом петли Тихельмана является именно ее сбалансированность. Выбор такой схемы позволит сократить количество установленной регулирующей арматуры. Соответственно, отпадает необходимость обслуживания дополнительных устройств и возможность их выхода из строя. В результате повышается общая надежность системы и упрощается ее эксплуатация.

Также за счет того, что система является сбалансированной, все батареи в ее составе греют практически одинаково без применения дополнительных решений. Это оптимизирует работу котла и насоса, снижает износ оборудования. Кроме того, в таком режиме повышается эффективность работы системы.

Петля Тихельмана подходит для создания и систем с принудительной циркуляцией, и для самотечных систем. Наиболее распространены, безусловно, принудительные системы. Однако если возникает потребность создания системы с естественной циркуляцией теплоносителя, то хорошим выбором будет именно попутная схема. Это также объясняется сбалансированностью трубопровода и отсутствием необходимости в установке дополнительной регулирующей арматуры.

Радиаторы Lammin обладают высокой тепловой эффективностью и отличными гидравлическими характеристиками. Благодаря этому их использование дает возможность в полной мере использовать все преимущества данного типа отопительной системы.

Помимо перечисленных достоинств, петля Тихельмана имеет и ряд недостатков:

  • существенное увеличение протяженности трубопроводов;
  • необходимость использования труб различного диаметра;
  • необходимость прокладки трех магистральных трубопроводов.

Главным минусом является увеличенная протяженность трубопроводов. Это приводит к значительному росту материальных затрат на комплектацию системы отопления. Кроме того, перечисленные недостатки усложняют работы по ее монтажу.

В связи с этими недостатками схемы с попутным движением применяются реже, чем тупиковые. Однако для создания крупных систем с протяженными трубопроводами такая схема зачастую является просто незаменимой и обеспечивает максимальную эффективность.

Попутная система отопления своими руками: схема

Петля Тихельмана. Попутная система отопления. Схемы, расчет и выбор диаметров.

Схема попутной системы отопления, называемая петлей Тихельмана.

Рисунок: Петля Тихельмана схема в частном доме.

Схему называют попутной, потому что движение теплоносителя подачи и обратки двигаются в одном направление. То есть двигаются попутно. Это система отопления с попутным движением теплоносителя.

Откуда пришло название петля Тихельмана?

Придумал и открыл такую цепь немецкий инженер Альберт Тихельман (Albert Tichelmann, 1861-1926). В 1901 году в честь Альберта Тихельмана и была названа эта цепь петля Тихельмана. К сожалению подробной биографии не существует. Идея этой цепи по многим мнениям это усовершенствование двухтрубной тупиковой системы, у которой есть недостатки по отдаленности потребителей от начала магистральных труб, что приводит к уменьшению давления и расходов у потребителей. Двухтрубную тупиковую можно переделать в попутную(петлю Тихельмана) добавив третий трубопровод. Об этом будет сказано ниже о трехтрубной системе.

Существуют ли достоинство у петли Тихельмана?

Петля Тихельмана не обладает большими достоинствами, о которых многие говорят. В этом вы убедитесь, когда ознакомитесь со всей статьей.

Достоинство, которое разрекламировано в сети интернет – это то, что радиаторы не нуждаются в балансировке расходов. Однако это утверждение ошибочно! Чтобы понять это познакомьтесь со всей статьей.

Петля Тихельмана может называться трехтрубной системой

В некоторых случаях такую цепь называют трехтрубкой, когда схема выглядит таким образом:

Рисунок: Петля Тихельмана трехтрубная.

Под радиаторами находятся три трубопровода. Такая трехтрубка получается экономически не выгодной по материалам, монтажу и занимает больше пространство под радиаторами. Поэтому трехтрубка не делается, и в место нее делается двухтрубная тупиковая.

Читайте также:
Водяное отопление в гараже без электричества

Попутная система отопления, больше подходит в случаях, когда по всему периметру дома стоят радиаторы.

Рисунок: Двухтрубная попутная система отопления двухэтажного дома. Две петли Тихельмана.

Но пустить трубы по периметру бывает проблематично из-за входной или балконной двери. Также мешают лестницы.

Поэтому чаще всего, если есть двери по периметру, то делают двухтрубную тупиковую.

Чем же петля Тихелмана так примечательна?

В отличие от двухтрубной тупиковой, у такой цепи сумма длин подающей и обратной трубы до каждого радиатора равна одному значению. Это можно посчитать на схеме:

К примеру, предположим, что радиаторы удалены друг от друга на 1 метр. Тогда до каждого радиатора сумма длин подающей и обратной трубы будет равна 11 метрам.

1 радиатор = 1 + 10 = 11 м.

2 радиатора = 2 + 9 = 11 м.

3 радиатора = 3 + 8 = 11 м.

Петля Тихельмана в отличие от двухтрубной тупиковой, дает ошибочное представление того, что такая цепь не нуждается в балансировке расходов между радиаторами, потому что до каждого радиатора одна и та же сумма длин труб подачи и обратки. И получается, что якобы, радиаторы находятся в одинаковых гидравлических условиях. Однако это заблуждение получило широкую огласку среди населения и сантехников. И по-прежнему появляются цепи Тихельмана с плохо греющими средними радиаторами.

Что мешает петле Тихельмана быть идеальной системой отопления?

Почему не греет петля тихельмана?

Каждый радиатора в цепи петли Тихельмана является байпасом цепи для другого радиатора так же, как и в двухтрубной тупиковой системе отопления. Теплоносителю легче пробежать по ближнему радиатору к котлу, чем по отдаленному от котла. Происходит опрокидывание потока в петле Тихельмана через радиаторы с малым гидравлическим сопротивлением. Поэтому так важно создавать искусственное гидравлическое сопротивление радиаторным веткам.

Какие условия нужно соблюдать в петле Тихельмана для того, чтобы средние радиаторы грели хорошо?

Каждая радиаторная ветка должна обладать гидравлическим сопротивлением равной 0,5-1 Kvs. Это сопротивление может выдать термостатический или балансировочный клапан, который ставится на линию радиатора. Как правило, когда делается экономия на термостатических и балансировочных клапанах (то есть не устанавливаются), то каждая радиаторная ветка начинает обладать малым гидравлическим сопротивлением, что сравнимо с тем, как если бы вы просто соединили подачу и обратку трубой (Грубо сделали байпас).

Примечание: Для гравитационных систем отопления с естественной циркуляцией радиаторным веткам не нужно создавать искусственное сопротивление. Потому что за счет естественного напора теплоносителя радиаторная ветка сама влияет на свой расход.

Петля Тихельмана может применяться без насоса, но только с большими диаметрам, как это делается для гравитационных систем отопления с естественной циркуляцией. А для расчета диаметров вам поможет программа симулятор системы отопления: Подробнее о программе

Экономическая разница между петлей Тихельмана (попутной) и Двухтрубной тупиковой?

Стоимость попутной системы отопления может быть дороже, чем двухтрубная тупиковая. Потому что по периметру можно пустить две двухтрубные тупиковые. И диаметр трубопровода будет меньше, потому что расход на половину будет меньше.

Действительно расчеты и практика показывает, что попутная система отопления (петля Тихельмана) получается дороже из-за больших диаметров.

Были рассчитаны цены на материалы из 7 радиаторов по периметру дома с полипропиленовой трубой. Была использована петля Тихельмана и двухтрубная тупиковая в два крыла по периметру. Цены взяты от производителя Valtec. Весь материал Valtec.

При использовании полипропиленовой трубы, в двухтрубной тупиковой системе отопления в семь радиаторов сэкономили 1200 рублей по отношению к петле Тихельмана.

Также были рассчитаны цены на материалы из 7 радиаторов по периметру дома с металлопластиковой трубой. Была использована петля Тихельмана и двухтрубная тупиковая в два крыла по периметру. Цены взяты от производителя Valtec. Весь материал Valtec.

При использовании металлопластиковой трубы, в двухтрубной тупиковой системе отопления в семь радиаторов сэкономили 2646 рублей по отношению к петле Тихельмана.

Кстати в некоторых случаях вы можете сэкономить на балансировочных клапанах, если используете на радиаторной ветке 16мм трубу с термостатическим клапаном. Сопротивление термоклапана и 16мм труба увеличивают гидравлическое сопротивление. В таком случае нужно тестировать в программе симуляторе.

В петле Тихельмана требуются тройники нестандартной последовательности диаметров. Например, 32х20х25мм., которые вы можете не найти на рынке. У металлопластиковой трубы имеются больше разновидностей тройниковых переходов, чем на полипропилене.

Если думать о перепаде давлений всей цепи, то двухтрубная тупиковая оказалось меньше, чем попутная(петля Тихельмана). Петля Тихельмана составила 0,9 м.в.ст. Двухтрубная тупиковая 0,6 м.в.ст.

Раздутый миф о том, что петля Тихельмана не нуждается в балансировке радиаторов, абсолютно разрушен! И польза от такой цепи становится бесполезной. Можно по периметру пустить две двухтрубные тупиковые системы отопления с меньшим диаметром.

Есть некоторые соображения, что больший диаметр заменяет две трубы с маленьким диаметром. Но расчеты по сечению диаметров показывают, что выгоднее брать маленький диаметр, чем большой. То есть по отношению к сечению внутреннего диаметра получается, что маленькое внутреннее сечение стоит дешевле (не на много). И этот аргумент не в пользу петли Тихельмана.

Есть еще одна особенность гидравлики, что в большом диаметре меньше потерь напора при одинаковых скоростях движения теплоносителя. Это доказывается формулами по расчету потерь напора. Получается, что в большом диаметре мы можем больше получить расход теплоносителя. Но овчинка выделки не стоит при малом бюджете частного дома. Провел экспериментальный расчет трубы длиной 10 метров, при скорости 0,62 м/сек. получили разницу потерь напора с 0,32 до 0,51 м.в.ст. То есть, увеличивая сечение диаметра в два раза, мы получим расход на 130% больше. То есть увеличение расхода будет не в два раза больше, а 2,3 раз больше. Увеличение расхода связано именно с тем, что в больших диаметрах трубопровода меньше потерь напора по отношению к площади сечения диаметра. Конечно, эти данные будут зависеть от условий диаметров, потерь напора и скорости теплоносителя. Для каждого случая этот эффект будет разным. Поэтому не стоит сразу переходить на большие диаметры, нужно тестировать каждый отдельный случай в цепи.

Читайте также:
Попутная система отопления своими руками: схема

Для расчета цепи системы отопления, необходимо разделиться на маленькие диаметры труб и развести больше труб маленьких диаметров, чем больших. На больших диметрах дороже тройники и фитинги для переходов на другие диаметры. Ну а чем больше труб, тем больше работы по монтажу.

Монтаж петли тихельмана

Монтаж петли Тихельмана не сильно отличается от двухтрубной тупиковой системы отопления. Но вот тройники получается не стандартными. Например, 32х20х25мм. Такие тройники сложно найти на рынке. Если их не найти, то будите покупать переходники на определенные диаметры. У полипропилена фитинги стоят намного дешевле, чем у металлопластиковой трубы. Поэтому для металлопластика это будет дорогое удовольствие.

Какие выбрать диаметры в петле Тихельмана?

Диаметры в петле Тихельмана не простая задача, как и выбор диаметров в двухтрубной тупиковой системе отопления. Принцип выбора диаметров зависит от расходов и потерь напора в трубопроводе.

Ниже вы увидите как выбираются диаметры.

Плохие цепи петли Тихельмана

Плохо будут работать средние радиаторы, если отсутствует искусственное гидравлическое сопротивление на радиаторных ветках. Искусственное сопротивление создается балансировочными или термостатическими клапанами. У которых пропускная способность равна 0,5 – 1,1 Kvs.

Напорная система отопления с шаровыми кранами и полипропиленовой трубой 20 мм.

Нельзя делать так на шаровых кранах:

Такая радиаторная ветка обладает малым гидравлическим сопротивлением. Она съест большой расход и другим радиаторам останется мало.

Была протестирована цепь на 5 радиаторов с магистральной трубой ПП 25мм.

Расходы у радиаторов не одинаковые. На третьем радиаторе самый маленький расход. Это вызвано тем, что на радиаторных ветках стоят шаровые краны.

Если добавить в цепь термостатические клапана, то расходы станут более разделенными поровну:

Картина уже лучше! Но диаметры можно уменьшить в некоторых местах и сэкономить на этом. Например, на подаче в магистрали до 4 радиатора и на обратке от 2 радиатора.

Если мы попробуем на всей магистрали оставить ПП20мм, то получим следующие расходы.

Если бы мы использовали термоклапан или любое регулирующее устройство на 2 Kvs, то переход диаметров нужно было бы делать обязательно!

Потому что, если кто-нибудь полностью откроет кран, то это помешает работать нормально другим радиаторам. Встречаются регулировочные клапана для радиаторов на 5 Kvs. Ну если вы будите подкручивать нижний клапан для уменьшения пропускной способности, то тогда занимайтесь такой регулировкой. Конечно, лучше будет использовать закрытые балансировочные клапана, к которым не будет доступа к регулировке посторонними людьми.

Для того, чтобы улучшить разделение расходов на 5 радиаторов с применением регулирующих клапанов с большей пропускной способностью необходимо использовать трубы ПП32, ПП25 и ПП20.

Хорошие цепи петли Тихельмана

Критерии выбора диаметров:

Выбор диаметров для петли Тихельмана выбираелся исходя из перепада цепи максимум 1 м.в.ст. Температурный перепад радиаторов 20 градусов. Температура на входе 90 радусов. Разница выдаваемой мощности между радиаторами не превышает 200 Вт. Разница температурных перепадов между радиаторами не превышает 5 градусов.

Примечание: Указанные диаметры не применяются для низкотемпературных систем отопления. Для низкотемпературных систем нужно уменьшать температурный перепад до 10 градусов и это требует увеличение расхода в два раза.

Я приготовил цепи петель Тихельмана на 5 и 7радиаторов для металлопластиковой и полипропиленовой трубы.

5 радиаторов полипропиленовая труба, Kvs = 0,5.

5 радиаторов металлопластиковая труба, Kvs = 0,5.

7 радиаторов полипропиленовая труба, Kvs = 0,5.

В этой цепи используется ПП32 мм. Если вы поставите балансировочный клапан на 1 и 7 радиатор, то можно поменять трубу с ПП32 на ПП26 мм. Необходимо поджать балансировочные клапана на 1 и 7 радиаторах.

7 радиаторов металлопластиковая труба, Kvs = 0,5.

Тесты по выбору диаметров проводились в программе симуляторе системы отопления.

Программа применяется для тестирования систем отопления, перед тем как монтировать на объекте. Также можно тестировать существующие системы отопления, чтобы улучшать работу существующей системы отопления.

Если вам нужны расчеты диаметров для вашей системы отопления на 10 радиаторов, то обращайтесь за услугами по расчету сюда: Заказать услугу по расчету

Расчет петли тихельмана

Как и в двухтрубной тупиковой системе отопления, диаметры тоже приходится выбирать исходя из расхода и потерь напора теплоносителя. Петля Тихельмана является сложной цепью, и математический расчет сильно усложняется.

Если в двухтрубной тупиковой уравнение цепи выглядит проще, то для петли Тихельмана уравнение цепи выглядит так:

Подробнее о данном расчете рассказано в видеокурсе по расчету отопления тут: Видеокурс по расчету отопления

Читайте также:
Как сделать купель с подогревом на улице: технология изготовления

Как настроить петлю Тихельмана? Как настроить попутную систему отопления?

Как правило, у петли Тихельмана есть условия, когда средние радиаторы плохо греют в таком случае, как и в духтрубной тупиковой, зажимаем балансировочные клапана на радиаторах находящиеся ближе к котлу. Чем ближе радиаторы к котлу, тем сильнее зажимаем.

Система отопления петля Тихельмана получается дороже, но не намного. Возможно, что удастся уложиться примерно в одну цену, как с двухтрубной тупиковой.

Попутная разводка системы отопления усложняется поиском тройников с диаметрами определенной последовательностью, придется поискать уникальные тройники, если радиаторов 7 и более штук.

Петля Тихельмана нуждается в балансировке расходов между радиаторами.

Переходы диаметров в петле Тихельмана на магистральных линиях делать можно или даже нужно, если есть условия, когда это нужно делать обязательно.

К сожалению, система петля Тихельмана в отоплении встречается крайне редко. И поэтому о ней так много слухов и домыслов. И не удивительно, ведь она не имеет особо сильных преимуществ по сравнению с двухтрубной тупиковой системой отопления.

Только петля Тихельмана в частном доме получила наибольшее распространение, потому что хозяева своих домов, получили дезинформацию о том, что такая цепь якобы не нуждается в балансировке радиаторов.

Петля Тихельмана минусы:

Конструктивно тяжело пропустить трубы по всему периметру. Мешаются двери.

Сложно найти на рынке тройники диаметрами определенной последовательности. 32х20х25мм.

Отзывы петли Тихельмана

Ко мне обращаются не мало клиентов, у которых бывают проблемы с прогревом средних радиаторов в петле Тихельмана. Поэтому отзывы обычно не утешительные. Клиенты жалуются на петлю Тихельмана. Выше я объяснил, из-за чего это происходит и как заставить работать средние радиаторы в цепи петля Тихельмана.

Что такое попутная система отопления?

Попутная система отопления используется при обогреве частных домовладений. Систему можно смонтировать своими руками, если у владельца есть инженерные навыки. Применяется в одноэтажных и двухэтажных строениях большой площади.

Характеристика и особенности системы

Система отопления с попутным движением теплоносителя спроектирована в 1901 году инженером Тихельманом. В такой системе жидкость перемещается в попутном направлении по обоим контурам: подаче и обратке. Длина труб по контурам одинакова, гидравлические условия схожи. Поэтому последний отопительный прибор нагревается также хорошо, как и первый. Такая система позволяет равномерно обогревать все помещения, экономить топливо. Попутная система отопления имеет альтернативное название – «петля Тихельмана», в честь ее создателя. Установка такой системы рекомендуется для обогрева больших помещений с 10 или более радиаторами. В небольших домах применение такой системы нацелесообразно.

Для установки попутной системы обычно нужен циркуляционный насос. Самотечная система возможна при сравнительно небольшом числе отопительных приборов (не более 10) и одноэтажной разводке.

Преимущества и недостатки

Попутная система имеет больше плюсов, чем минусов.

Преимущества системы с попутным движением воды:

  1. Вся система отопления прогревается равномерно, от начального до последнего радиатора. В каждом помещении будет одинаково тепло.
  2. Не нужно применять дорогое оборудование и сложную балансировку.
  3. Возможность установки регуляторов тепла.
  4. Монтаж попутной системы отопления возможен своими руками, особые навыки не требуются.
  5. Система имеет долгий срок эксплуатации.
  6. Высокая надежность и редкость поломок.
  7. Систему можно прокладывать под полом.
  8. Схема применима для двухэтажных домов.
  9. Система может работать самотеком.
  1. Повышенный расход труб. Их длина больше, чем в традиционных системах. К трубам требуется большое количество единиц запорной арматуры.
  2. Трубы имеют большее сечение по сравнению с обычными схемами, а значит, обойдутся дороже.
  3. При сложной конфигурации помещений применение схемы становится невозможным ввиду ограничений по обводам (нельзя применять прямые углы, разную высоту труб).
  4. При большой площади дома и нескольких этажах такая система обойдется в значительную сумму.

Традиционно используемые схемы

Традиционно для отопления домов применяют однотрубные или двухтрубные системы. Однотрубная схема подразумевает установку одного контура с теплоносителем.

Основным плюсом такой системы является небольшая общая длина трубопровода. Соответственно меньше финансовые затраты на прокладку системы, монтаж ведется быстрее, ниже аварийность. Минусом такой схемы является снижение температуры воды при проходе по трубам, последний радиатор может быть недостаточно горячим.

Используемые схемы для попутной системы отопления

Двухтрубная схема (двухконтурная) требует установки двух контуров для циркуляции воды от котла до батарей отопления. Первая труба подает тепло от котла в радиаторы, вторая является обратной, остывшая вода перемещается в обратном направлении. Схемы разводки в обоих случаях довольно просты.

При двухконтурной схеме батареи подсоединяют параллельно их можно выборочно перекрывать при необходимости.

Двухтрубные традиционные системы также называют тупиковыми. Основное отличие от «петли Тихельмана» в том, что подача теплоносителя подающей и обратной магистралей идет по разным направлениям. Горячая вода идет от котла к батарее, отдает тепло и отводится в «обратку», двигаясь к котлу. Встречное движение воды имеет некоторые недостатки: ближние к котлу радиаторы греются быстрее и помещения отапливаются неравномерно.

Тупиковая и попутная схема движения теплоносителя

Попутная система отопления частного дома имеет преимущества по сравнению с тупиковой по гидравлике. Теплоноситель перемещается в одном направлении, вода проходит одинаковое расстояние и этим обеспечивается оптимальная сбалансированность системы. Радиаторы используются одинаковые по размеру и мощности.

Читайте также:
Лучевая система отопления: особенности работы, схема установки, возможности модернизации.

Алгоритм выполнения монтажных работ

Монтаждвухтрубной попутной системы отопления ведется в соответствии с определенным алгоритмом, где начальным этапом является подбор диаметра труб, а конечным – установка циркуляторного насоса.

Расчет диаметра трубопровода

Есть научно обоснованный способ расчета. Сечение трубы выбирается, исходя из объема теплоносителя, проходящего по трубе в единицу времени. Расчет начинают от дальнего радиатора по формуле:

где: G − расход воды на обогрев дома (кг/ч);

Q − тепловая мощность, требуемая для обогрева (кВт);

c − теплоемкость воды (4,187 кДж/кг×°C);

Δt − разность температур между горячим и холодным теплоносителем, принимается равной 20 °C.

Далее вычисляют сечение труб по формуле:

где: S − площадь поперечного сечения трубы (м2);

GV − объемный расход воды (м3/ч);

v − скорость движения воды, находится в диапазоне 0,3−0,7 м/с.

Полученная цифра – это сечение, исходя из него, подбирают внутренний диаметр трубопровода.

Такой расчет ведут по всем радиаторам до котла.

При расчете также можно ориентироваться на таблицу зависимости внутреннего диаметра трубы от тепловой нагрузки.

Таблица зависимости внутреннего диаметра трубы от тепловой нагрузки

Можно учитывать следующие ориентиры:

  1. При потерях тепла до 15 кВт (150 м кв.) площади подойдут трубы диаметров 20 мм.
  2. При потерях от 15 до до 27 кВт (до 250 м кв. площади) потребуются трубы диаметром не менее 25 мм.

Провести расчет по приведенным формулам или гидравлическим таблицам для домовладельца является сложной задачей, поэтому можно основываться на рекомендуемых диаметрах труб.

Необходимо соблюдать следующие условия:

  • Трубы класть под напольным покрытием для избегания высотных обводов. Если это невозможно, то нужно учитывать конфигурацию дома и максимально стремиться к одинаковой высоте прокладки труб.
  • Материал труб – металлопластик или полипропилен с армированием алюминиевой фольгой. Такие трубы прочнее и прослужат долго.
  • Радиаторы ставят биметаллические или стальные с нижней системой подключения. У таких батарей выше гидравлическое сопротивление, что балансирует систему. Мощность радиаторов должна быть одинакова по всей площади дома.
  • На каждую батарею ставят балансировочный кран на обратке. Желательна установка терморегуляторов.

Установка котла

Помещение, где ставится котел, должно иметь высоту не менее 2,5 м. Объем помещения рекомендуется от 8 кубометров. Водогрейный котел требуется подбирать в зависимости от площади отапливаемого дома. Мощность котла для обогрева 10 кв. м. равна 1 кВт. Исходя из этого, подбирается мощность для всей системы.

Обвязка котла состоит из комплекта запорной арматуры, ее устанавливают в нескольких местах:

  1. На патрубке подпитки.
  2. По обеим сторонам насоса.
  3. У расширительного бака.
  4. На трубах, идущих от котла.

Протягивание магистрали

При монтаже магистрали попутной разводки системы отопления необходимо учесть следующее:

  • Отводящую ветку магистрали надо располагать ниже подающей.
  • Трубопроводы подачи и отвода тепла должны быть параллельны друг другу.
  • Бак расширительный должен быть установлен выше котла отопления.
  • На замыкающих радиаторах нужно установить вентили для спуска воды. Рекомендуется установить на каждой батарее термостатическую головку для обеспечения комфортности температуры.
  • При прокладке магистрали прямые углы исключены во избежание возникновения воздушных пробок в системе.
  • Расширительный бак должен устанавливаться в отапливаемом помещении.
  • Все диаметры труб, фитингов и кранов должны соответствовать друг другу. Нельзя ставить трубы разного диаметра из-за попытки сэкономить. Нарушится давление воды в системе.

Установка циркуляционного насоса

Рассчитывать на естественную циркуляцию неразумно, так как в попутной системе отопления расположено 10 и более батарей. Гравитация не сможет сработать без принудительного давления. Циркуляционный насос устанавливают на обратной ветке возле котла. Насос врезается при помощи байпаса и трех вентилей. Рекомендуется установить фильтр.

Циркуляционный насос устанавливается на каждом этаже

Попутную систему отопления устанавливают в одно этажных и двухэтажных домах. В двухэтажных строениях при установке нужно учитывать некоторые нюансы:

  • Циркуляционный насос устанавливается на каждом этаже. Если возникнет поломка в пределах одного этажа, на другом отопление будет полноценно работать.
  • Для каждого этажа рекомендуется монтаж по отдельной схеме.

Возможные осложнения при монтаже

При соблюдении одинакового диаметра труб отопления, расположения радиаторов на одной высоте – обычно проблем при монтаже и после него не возникает.

Проблемы могут быть при нарушении порядка монтажа:

  • Некачественная пайка труб из полипропилена приведет к зауживанию диаметра трубы.
  • Установка радиаторов из разного материала и разной мощности нарушить сбалансированность системы.
  • Отсутствие балансировочных вентилей для выравнивания гидравлического давления.
  • Расположение ветки магистрали с перепадом высоты.
  • Неверный выбор насоса. Напор должен быть не менее 0,2 кгс/см2.
  • Применение труб разного диаметра может привести к разбалансировке системы и затруднению прохождения теплоносителя.

Попутная двухконтурная система отопления рекомендуется для отопления в одноэтажных домах. Не требует сложных расчетов, балансировки и особых способов проведения монтажа. Стоимость такой системы дороже традиционной, но это компенсируется долговечностью и простотой эксплуатации. Кроме того, такую систему владелец дома может установить самостоятельно, не применяя сложных инженерных решений, инструментов и материалов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: