Электрическое отопление в частном доме: какой вид выбрать?

Как обогреть дом
зимой и не
разориться: 10
экономных
обогревателей и
конвекторов

Газовое отопление в частном доме — дорого и сложно. Твердотопливные котлы капризны и постоянно требуют внимания. Если вы хотите получить обогрев быстро и без лишних усилий, идеальный вариант — электричество. «Эльдоблог» расскажет, какие обогреватели выбрать, чтобы обойтись минимальными расходами.

Что лучше: конвектор, обогреватель или тепловентилятор?

Если актуально, как выбрать конвекторный обогреватель для дачи и частного дома, начинать следует с мощности. Оптимальное соотношение — 100 Вт на каждый квадратный метр. Но иногда этот показатель приходится увеличивать — при высоте потолков более 2,7 метров, при утечке тепла через деревянные окна, плохо уплотненные двери и другие «мостики холода». А вот хорошее утепление дома позволяет снизить цифру до 80 или даже 60 Вт на квадратный метр.

Если важнее, как обогреть дом электричеством экономно, тогда ориентируйтесь на тип обогревателя.

1. Классический конвектор работает почти бесшумно, но медленно прогревает воздух и быстро остывает.

2. Громоздкие масляные радиаторы удерживают тепло в течение нескольких часов после отключения.

3. Компактные тепловентиляторы быстро наполняют комнату потоками горячего воздуха, но тихими и экономичными их назвать сложно.

4. Инфракрасные обогреватели обходятся минимальным энергопотреблением и дают тепло через несколько секунд после включения, но воздействуют на ограниченную площадь. Идеальный выбор, если вам нужно обогреть место работы или отдыха, а не всю комнату.

Как выбрать обогреватель для дома, который идеально подходит для вас? Присмотритесь к другим характеристикам.

  • Панель управления — механический регулятор, электронные клавиши или сенсорные кнопки. Одни модели позволяют выбирать только температуру, а другие — мощность.
  • Способ установки — на полу, столе, тумбочке, стене или потолке.
  • Класс защиты от пыли и влаги. Обогреватели категории IP44 и выше можно ставить рядом с источником воды — в ванной, санузле или на кухне.
  • Уровень шума актуален для относительно громких тепловентиляторов. 20 дБ — шорох листьев за окном, 30 дБ — шелест бумаги, 40 дБ — компрессор холодильника, 50 дБ — разговор нормальным тоном, 60 дБ — кухонная вытяжка, 70 дБ — стиралка в режиме отжима.
  • Дополнительные функции: система безопасности от опрокидывания, перегрева и перегрузки; дистанционное управление; защита от замораживания, если оставляете устройство без присмотра на даче, а также колеса и ручка для передвижения.

Топ обогревателей 2020 года для экономного отопления

Конвектор Zanussi ZCH/S-2000 MR

В Zanussi знают, как обогреть дом зимой недорого. Монолитный нагревательный элемент, который быстро набирает нужную температуру и равномерно рассеивает тепло в воздухе. Еще одно удачное решение — сверхточный термостат с погрешностью не более 1,5°. Он будет поддерживать комфортный микроклимат и мгновенно отключит питание в случае перегрева.

  • Мощность — 2000 Вт
  • Рекомендованная площадь — 25 кв. м

Конвектор Ballu Evolution Digital Inverter BEC/EVI-2500

Как выбрать экономный электрический обогреватель для дома? Пока другие модели включаются и выключаются несколько раз в час, этот конвектор постоянно работает с небольшой нагрузкой, благодаря плавной регулировке мощности. Значит, он потребляет меньше энергии и служит дольше. Х-образный нагревательный элемент покрыт множеством выступов, напоминающих иголки ежа. Он быстро прогревает воздух, поэтому вам не придется кутаться в одеяла и пледы сразу после возвращения домой.

  • Мощность — 2500 Вт
  • Рекомендованная площадь — 30 кв. м

Масляный радиатор Electrolux EOH/M-6209

U-образные нагревательные элементы «придают бодрости» масляному радиатору. Он прогревает воздух в помещении в два раза быстрее моделей прошлого поколения. В устройстве — три уровня мощности. Поэтому не нужно мириться с большим энергопотреблением в относительно теплые дни. Многоступенчатая система безопасности защищает его от коротких замыканий, утечки тока, перегрева, перегрузки и опрокидывания.

  • Мощность — 2000 Вт
  • Рекомендованная площадь — 25 кв. м

Масляный радиатор Ballu Explorer BOH/EX-07 1500

Экономичный — не значит медленный. Радиатор быстро рассеивает тепло в воздухе, благодаря тщательно выверенной форме вентиляционных отверстий. Его термостат точно поддерживает заданную температуру и мгновенно отключает питание при малейшем намеке на перегрев. А большие колеса, удобная ручка и крепление для сматывания кабеля позволяют легко перевозить прибор между комнатами.

  • Мощность — 1500 Вт
  • Рекомендованная площадь — 20 кв. м

Тепловентилятор Electrolux EFH/S-1115

Как выглядит обогреватель для дома, который впишется в дизайнерский интерьер? Стильный тепловентилятор понравится любителям ретро — он похож на радиоприемник 1960-х годов. Прибор даже легко поместится в рюкзак, а корпус из ударопрочного пластика не пострадает в поездке. У модели есть два режима работы с разной мощностью — для межсезонья и суровых зимних морозов.

  • Мощность — 1500 Вт
  • Рекомендованная площадь — 20 кв. м

Тепловентилятор Tefal Intense Comfort Hot SE9420F0

Присмотритесь к этой модели, если вы хотите знать, как обогреть дом зимой экономно. На смену раскаленной спирали приходит безопасный керамический нагреватель, а громоздким лопастям — невидимый центробежный вентилятор. Обогреватель Tefal работает также тихо, как инверторный холодильник. А еще он действительно экономичен — всего половины максимальной мощности хватит, чтобы долго поддерживать в комнате температуру 19–20°.

  • Мощность — 2400 Вт
  • Рекомендованная площадь — 25 кв. м

Тепловая пушка Ресанта ТЭП-3000К

Более мощный вариант тепловентилятора полезен для загородного дома. Когда достигнете нужной температуры, просто выберите экономичный режим — энергопотребление уменьшится вдвое. Тепловая пушка будет полезной и летом — она может работать в режиме холодной вентиляции.

  • Мощность — 3000 Вт
  • Рекомендованная площадь — 25 кв. м
Читайте также:
Отапливаемая теплица: Как сделать зимнюю отапливаемую теплицу своими руками?

Тепловая пушка Daire ТВ 2/3 СТ-02

Самый экономичный обогреватель в обзоре прогреет большую гостиную или скромную дачу за несколько минут! Тепловая пушка готова к работе в экстремальных условиях. Она без проблем запускается при температуре −10° и выдерживает перепады напряжения от 200 до 240 Вольт, досаждающие владельцам загородных домов.

  • Мощность — 1200 Вт
  • Рекомендованная площадь — 20 кв. м

Конвектор Primera ALUX PHP-1500-MXB

Благодаря X-образной форме монолитного сердечника конвектор прогревает помещение через несколько минут после запуска. Можно плавно регулировать температуру и выбирать два уровня мощности, чтобы получить максимальную отдачу зимой или сэкономить электроэнергию в межсезонье. С установкой прибора проблем тоже не будет — доступны съемные ножки с колесиками и настенные крепления сзади.

  • Мощность — 1500 Вт
  • Рекомендованная площадь — 20 кв. м

Тепловентилятор Primera ROTARY FHP-1510-DCOT

Компактный прибор легко обогреет большую комнату — поворачивается на подставке, равномерно распределяя потоки горячего воздуха. Вместо спирали в нем используется монолитная керамическая решетка — не сжигает пыль и не уменьшает содержание кислорода в воздухе.

  • Мощность — 1500 Вт
  • Рекомендованная площадь — 20 кв. м

Уже знаете, как обогреть дом без газа экономно? Переходите в каталог интернет-магазина «Эльдорадо» и выбирайте подходящие приборы — конвекторы, масляные радиаторы, тепловентиляторы и даже тепловые пушки.

Хотите стать автором «Эльдоблога»? Тогда присылайте нам свои обзоры и видео на технику и получайте до 1000 бонусов на новые покупки!

Правильное отопление дома электричеством — самый экономный способ

На чтение: 5 минут Нет времени?

Большинство частных домов имеют внушительную площадь и в силу того, что Россия некурортная страна, в которой круглый год царит лето, эту самую площадь нужно как-то отапливать в зимний период. Для этих целей существует целый арсенал разнообразия отопительных систем, но из-за больших объёмов многие варианты сильно бьют по карману. Если правильно подойти к данному вопросу, то окажется, что отопление дома электричеством — самый экономный способ.

Читайте в статье

Виды электрического отопления частного дома

Отопление посредством электричества можно разделить на несколько категорий: точечное, общее, комбинированное. Ниже, подробно описаны разновидности и принципы работы электроприборов такого плана.

Точечное отопление с помощью обогревателей

Отечественный рынок может предложить огромный ассортимент в сегменте отопительных приборов. Ценовая политика позволит выбрать модели как экономкласса, так и премиум агрегаты. Чтобы не запутаться в вариантах, они разбиты на подгруппы:

  • Конвекторные обогреватели. Основаны на работе игольчатых или х-образных ТЭНах.

Корпус этих приборов в основном выполнен из нержавеющей стали, но есть модели, которые сделаны из стекла либо камня. Геометрия короба предполагает наличие отверстий для забора воздуха внизу и решётки для выброса горячего потока вверху.

Такие устройства оснащены всевозможными датчиками и регуляторами. Что обеспечивает полную защиту от перегревов, опрокидывания, коротких замыканий и т. д. Некоторые экземпляры владеют дополнительными привилегиями: таймер отключения и включения, электронное управление, сенсорный дисплей, пульт ДУ, влагозащита, пылезащита и прочее.

Монтаж можно производить на стены, в плинтусную зону или пол при помощи колесиков.

Электрические конвекторы

  • Тепловые вентиляторы. Очень удобные и лёгкие в использовании, имеют маленькие габариты и незначительный вес. Стандартная мощность, которой обладает большинство тепловентиляторов 2 кВт, их вполне достаточно, чтобы обогреть небольшую комнату всего за 10 минут.

Работает устройство благодаря вентилятору, который гонит воздух на нагретую спираль, а та в свою очередь, нагревает поток и передаёт его в помещение. Такие приборы имеют ряд недостатков, таких как: сушка воздуха, греет пока дует, большой расход электроэнергии.

В магазинах можно найти аппараты с дополнениями в виде ионизатора, таймера сна, термостата. Такое электро отопление самое экономное без котла.

Виды тепловентиляторов

  • Инфракрасные обогреватели. Имеют массу преимуществ, что обеспечивает комфорт в процессе их эксплуатации. Прекрасная направляемая теплоотдача, вырабатываемая инфракрасным излучателем, сможет полноценно согреть вас не только в помещении, но и на улице.

Конструкция представляет собой вогнутый алюминиевый отражатель со специальным жароотталкивающим покрытием, которое сосредотачивает и направляет всю тепловую энергию в определённом направлении. Есть модели, которые имеют движущуюся основу, что обеспечивает обогрев на 90, 180 или 360 градусов.

Инфракрасные обогреватели

  • Масляные обогреватели. Старый знакомый радиатор, который успел согреть не одно поколение семей. Его способность нагреваться более чем на 100 градусов, расходуя при этом приемлемое количество энергии, завоевала много поклонников. Минеральное масло, которое находится внутри обогревателя не расширяется при сильном нагреве с помощью ТЭНа, что увеличивает рабочую температуру.

Современные обогреватели такого плана оснащаются компактным корпусом, удобными колесиками, широким функционалом настройки температуры, пультами дистанционного управления и многим другим. Явным минусом является тяжёлый вес, но наличие колёс упрощает перемещение прибора.

Виды масляных обогревателей

  • Тепловые насосы. Их изобрели ещё в первой половине XVIII столетия, но широкую огласку они получили в XXI столетии. Принцип действия заключается в генерации природного тепла (земля, вода, воздух), с помощью которого находящийся внутри насоса хладагент, переходит с газообразного в жидкую фазу. Этот процесс сопровождается выделением тепла, которое передаётся теплоносителем, двигающимся по системе отопления.

Для работы агрегата необходимо примерно 1 кВт электроэнергии при теплопроизводительности в среднем 4,5 кВт. Вы сейчас наверно подумали, что тепловой насос для отопления дома электричеством — дешевле некуда? Да, но есть большое НО, стоимость оборудования и монтаж всей системы будет стоить порядка пяти тысяч евро.

Принцип работы теплового насоса

Отопление электрическими котлами

В первую очередь данный вид котлов самый экологически чистый в отношении выбросов. Отличаются они от газового оборудования тем, что для их установки не требуется вентиляционная шахта и газопровод. Достаточно иметь подвод электричества, но здесь есть свои нюансы. Чтобы в них разобраться, нужно знать принцип расчёта необходимой мощности.

Читайте также:
Заправка газгольдера сжиженным газом - обзор всех условий

Существует средний показатель соотношений параметров: на 1 кВт мощности приходится 20 м3 площади (при высоте потолка до 2.7 метра). По такому расчёту необходимо высчитать нужную мощность котла для отопления дома электричеством. Самый экономный способ приобрести котёл — это выбрать отечественного производителя.

Примечание! Учитывайте тот факт, что максимально предоставляемая мощность электрокотлов производителями для сетей 220В — это 6 кВт. То есть площадь дома не должна превышать 120 м3, это примерно 47 м2. В противном случае вам понадобится 3 фазы (380В).

Электрические котлы бывают настенные и напольные, одноконтурные и двухконтурные. Принцип нагрева воды у них одинаковый. Внутри теплообменника находится ТЭН, который через змеевик нагревает водяной поток, его приводит в движение циркуляционный насос, установленный перед котлом на входной трубе. При наличии второго контура, к котлу подводят отдельный трубопровод. Входящая вода поступает из трубы водоснабжения, а исходящая соединяется с бытовыми кранами в доме. Чтобы вода не перегревалась внутри котла, при закрытых кранах, в нем расположен мини-бойлер. Когда вода в бойлере нагревается до определённой температуры, ТЭН второго контура отключается.

По уровню электропотребления, эти котлы не особо экономные, но в случае применения дополнительного оборудования, которое в автоматическом режиме управляет всей системой, затраты можно сократить на 20-30%.

Что касается самого теплоносителя, то здесь необходимо использовать только дистиллированную воду или антифриз. В случае использования электродного котла, теплоноситель должен состоять из солевого раствора. Об это типе котлов вы сможете узнать в конце статьи.

Электрический котёл для отопления дома 220В

Комбинированные виды отопления

Здесь не существует специального оборудования, которое называлось бы комбинированным. Смешанность достигается при помощи совмещения нескольких видов отопительных устройств в один рабочий орган. К примеру, основным отоплением дома является твердотопливный котёл, а электрический работает для снабжения полов теплом. Или главный в доме электрический агрегат, а зимний сад и веранда отапливаются с помощью инфракрасных обогревателей. Ну и совсем шикарно, когда в жилище установлено три разных котла, газовый, на дровах и электрический (с таким отоплением даже война не оставит жильцов без тепла).

Комбинировать можно не только обогреватели, но и источники энергоснабжения. Это делают путём установки ветряка или солнечных батарей.

Описание популярных моделей и систем для отопления

Для полноценного определения самых выгодных моделей нужно проанализировать целую тонну материала о характеристиках и показателях эффективности теплоотдачи. Конечно, в интернете присутствует большое количество ТОПов, описывающих самые популярные модели обогревателей в своём сегменте (здесь представлен один из лучших ТОП 10 электрических обогревателей), но на самом деле выбор можно ограничить. Делается это по следующим критериям:

  • Необходимая мощность;
  • Способ монтажа;
  • Класс защиты безопасности;
  • Необходимые дополнительные функции;
  • Габариты корпуса;
  • Дизайн;
  • Размер бюджета для покупки;

Составив список, вы с лёгкостью сможете выбрать подходящий вариант.

Обзор электрических котлов для отопления частных домов: цены на самые популярные модели

Здесь представлен перечень самых популярных производителей, которые отличились отменным качеством и превосходными характеристиками. Отопление в частном доме электрокотлом (стоимость в таблице ниже), считается альтернативой при отсутствии газовой магистрали.

Как выбрать и установить электрический котёл, и не разориться

“Покупать электрокотёл – невыгодно”. Этот миф опровергает факт того, что производители выпускают всё больше моделей разной комплектации на любой запрос потребителя. При отсутствии альтернативы отопление электричеством становится выгодным решением. Надо просто грамотно подобрать оборудование, правильно установить, отрегулировать работу. Об этом поговорим здесь. И опять же, оттолкнёмся от Ваших пожеланий.

Как выбрать и установить электрический котёл, и не разориться

Выбираем котёл

Вам важно знать все “за” и “против”?

Тогда обсудим плюсы и минусы электрокотлов. Они безопасны – нет открытого пламени и легковоспламеняемого топлива в доме. В работе не загрязняют дом, нет пепла, гари и пыли. Не вырабатывают в окружающую среду вредных выбросов. Жители не заботятся о запасах топлива. Могут длительное время находиться в режиме выключения, это важно для дачи сезонного проживания или при частых длительных отъездах хозяев. По габаритам не требуют много места. Есть из чего выбрать и по задачам, и по дизайну. Главным минусом считают стоимость энергии. Нечасто используется для обогрева больших домов. Как экономить, расскажем ниже.

Любите последовательность?

Тогда первым делом Вам необходимо выяснить, какую мощность предоставит линия электрообеспечения. Мощность котлов начинается с показателя 3,5 кВт. Если напряжение предоставленной сети равно 220 В (однофазная), то можно подключать котёл от 7 до 12 кВт мощности. Такая мощность хватает для квартир. Для более мощных устройств, например, в частный дом, нужна трёхфазная сеть с напряжением 380 В. Если подключить мощный котёл к однофазной сети, возможно замыкание и возгорание.

Сечение кабеля

Не менее важно подобрать правильное сечение кабеля:

Мощность котла

Сечение кабеля однофазных электрокотлов

Сечения кабеля трёхфазных электрокотлов

Напольный или настенный?

Напольные котлы работают на высокой мощности (40-60 кВт). Их выбирают для частных домов от 500-600м² и более. Минусы: повышенный расход электричества, занимают много места в доме. Их ставят на кухне или в ванной. Обычно выделяют отдельное помещение. Работают бесшумно. Нужна выделенная линия на 380 В.

Напольный электрокотел

Настенные котлы покупают для дач, квартир и домов до 500 м². Иногда их используют как вспомогательное оборудование, когда основное выходит из строя. Экономно тратят энергию, имеют компактный размер, их ставят на кухне, в коридоре, или любом другом удобном месте. Не всегда выпускаются с контуром для горячего водоснабжения. На это нужно обратить внимание, если задача не только топить дом, но и греть воду.

Читайте также:
Хранение газовых баллонов в жилых домах и не только
Настенный электрокотел

Хотите понимать, за что платите?

Тогда учитывайте разные способы нагрева теплоносителя в котлах. Их три вида: ТЭНовые, электродные и индукционные.

Хотите сэкономить – выбирайте ТЭНовый котёл. Нагреватель в таком котле – это трубчатые элементы со спиралью внутри. Сам ТЭН вмонтирован в теплообменник, который заполняется водой (или другим теплоносителем). Для безопасности и длительной работы в корпус врезана запорно-регулирующая арматура. ТЭНовые котлы проверены временем и доступны в цене. Можно заливать любой вид теплоносителя. Имеет простое строение и легко чинится. К недостаткам такого котла относят налёт, который со временем накипает на ТЭНе. Очищают его самостоятельно, иначе падает КПД котла. Этого можно избежать, если обеспечить качественный теплоноситель – мягкая вода или дистиллированная. Спираль в ТЭНе тоже подвержена прогоранию, её можно заменить.

ТЭНовый электрокотел

Электродный котёл превращает электроэнергию в тепло через ионный обмен. Вода с растворёнными в ней солями превращается в электролит. Она протекает между двух электродов и нагревается через переменное электрическое напряжение. Такие котлы компактные, простые в конструкции, безопасные и стоят недорого. Не нужен объёмный бак и насос для циркуляции. Главный минус – нужно следить за качеством теплоносителя: вода должна соответствовать значениям удельного сопротивления. Если качество не соответствует, КПД снижается, а котёл и вовсе может перестать работать. Также придётся менять электроды, т.к. они растворяются в воде в процессе пользования. Для электродных котлов делают особо надёжную систему заземления.

Электродный котел

Внутри индукционного котла размещена катушка (индуктор). Она, как антенна, создаёт магнитное поле с высоким напряжением. Внутри катушки быстро нагревается металлический сердечник. Он отдаёт тепло жидкости. Это может быть вода или этиленгликоль. Такие котлы не затратные в процессе работы. Пожаробезопасны, не имеют подвижных механизмов, поэтому прослужат долго. Не нужно отдельное помещение для установки. КПД составляет 99%. Почти не страдают накипью. К минусам индукционных котлов можно отнести тот факт, что они довольно тяжёлые и объёмные. Стоят же такие котлы дороже других электрических.

Индукционный котел

Выбирая один из трех вариантов, нужно понимать: какую цель Вы преследуете. Если стоит задача сэкономить – берите проверенный и надёжный ТЭНовый механизм. Но будьте готовы к возможной накипи, которую нужно чистить. Если есть возможность, то лучше приобретите более дорогой, но эффективный индукционный котел. Он также хорош для комбинирования, например, с тёплым полом. В тандеме они прогревают дом за несколько минут.

Хотите точно знать, что получите желаемый результат?

Расчёт мощности котла

Даже зная, что котёл работает с КПД близким к 100%, не стоит уповать на то, что дом будет гарантированно обогрет. Поэтому Вам необходимо рассчитать мощность котла. Она вычисляется индивидуально для каждого дома, а связано это с разной степенью утепления. Примерную мощность вычисляют как 1 кВт на каждые 10м². Допустим, для дома 120 м² потребуется котёл 12 кВт. Это нижняя граница требуемой мощности. Для более точного расчёта эту цифру умножают на климатический коэффициент и добавляют 10-15 % возможных теплопотерь. Климатический коэффициент для Подмосковья и Москвы равен 1,2-1,5.

Подробнее о расчёте мощности котла Вы можете узнать здесь.

Хотите экономить на электроэнергии?

Экономим на электроэнергии

Для этого выбирайте модели с автоматическими ступенями мощности, где в котле вмонтирован термостат. При достижении теплоносителем заданной температуры, термостат блокирует цепь питания нагревателя. В котлах с микропроцессором удаётся экономить до 30% энергии. Если есть внешний датчик котла, то при прогреве воздуха в комнате до желаемой температуры, оборудование переходит на эконом-режим.

Также можно купить двухтарифный счётчик и использовать ночное отопление, когда цена за кВт меньше дневного тарифа. Ночью на улице холодно и дом протапливают в это время. А днём, если все отсутствуют, обогрев выключают.

Радиаторы прогреваются лучше, если котёл ставят в нижней точке отопительной системы. Это лучше предусмотреть на этапе проектирования системы отопления.

Если добавить к основному отоплению решение «тёплый пол», то оптимизируется расход тепла, дом станет теплее без дополнительных затрат на энергию.

Хотите разобраться с комплектацией?

Есть варианты в максимальной сборке. Это значит, что всё необходимое будет уже встроено: расширительный бачок, насос для циркуляции теплоносителя, автоматика. И котёл работает как мини-котельная. Такой вариант подходит тем, кто ценит время и не хочет самостоятельно докупать и монтировать дополнительные приборы.

Вариант с минимальной комплектацией могут себе позволить только люди, разбирающиеся в тонкостях выбора дополнительной комплектации и способные всё это смонтировать в единую систему. Придётся докупать отдельно бак, насос, блок безопасности и запорную арматуру.

Максимальная комплектация может выйти дешевле, если сложить все расходы второго варианта.

Правильно размещаем и монтируем

Ну вот мы и добрались до главного. Наши советы примерно обрисовали Вам картину необходимого оборудования. А теперь немного об установке.

Монтаж котла

Электрокотёл ставят в помещение, где нет доступа взрывоопасных соединений, токопроводящей пыли и кислотных паров. Необходимо контролировать влажность воздуха, она не должна превышать 80%, а температура внутри не выше +25 градусов.

Для размещения важно сохранить расстояние между корпусом и стенами от 5 сантиметров. Перед котлом оставляют от 70 сантиметров свободного подступа к оборудованию. При этом расстояние до потолка оставляют не меньше 80 сантиметров. Для подвесного котла расстояние до пола оставляют от 50 сантиметров. Такое же расстояние оставляют до ближайших труб.

Читайте также:
Система отопления: Преимущества и недостатки системы отопления с естественной циркуляцией

Провода защищают от случайного попадания воды и конденсата с потолка. Для защиты кабеля используют кабель-канал или гофру из негорючего материала.

Напольный котёл устанавливают на подставку, которая продаётся в комплекте. Для настенного котла применяют анкера и дюбеля. Стену размечают и дрелью делают отверстия в горизонтальной плоскости. Минимальный перекос влияет на работоспособность котла. В отверстия забивают дюбеля и вкручивают анкера. Далее, подвешивают котёл.

Аппарат подключают напрямую от сети, для этого от коробки распределения тока ведут кабель к котлу. Чтобы защитить кабель от повреждений и не испортить интерьер дома, его прокладывают скрытым способом.

Чтобы скачки напряжения не вывели из строя приборы, к котлу подключают стабилизатор напряжения. Заземляющий провод ведут напрямую к котлу.

После соединения элементов, проверяют, нет ли оголённых контактов, не повреждена ли изоляция. Осматривают соединительные муфты, стыки на трубах, краны. Затем запускают систему: открывают задвижки оборудования и подают ток.

Резюмируем сказанное

Электрокотёл не так страшен по расходам на энергию, как его малюют. Чтобы выбрать оборудование, которое обеспечит дом теплом, учитывают параметры: мощность, предпочтительный способ нагрева, комплектацию, планируемый бюджет. Затем настраивают оборудование под режим жизни семьи и оптимизируют затраты.

Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия

Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.

Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.

Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления.

Расчет гидравлики водяной системы отопления

Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.

Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.

Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.

Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.

На данном этапе проектирования определяются:

  • диаметр труб и их пропускная способность;
  • местные потери давления по отдельным участкам системы отопления;
  • требования гидравлической увязки;
  • потери давления по всей системе (общие);
  • оптимальный расход теплоносителя.

Для производства гидравлического расчета необходимо проделать некую подготовку:

  1. Собрать исходные данные и систематизировать их.
  2. Выбрать методику расчета.

Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Схематичное изображение отопительной системы в частном доме

На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:

  • мощности радиаторов;
  • расхода теплоносителя;
  • расстановки теплового оборудования и пр.

Расчет диаметра труб

Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) — V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.

Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени

Q (Вт) = W (Дж)/t (с)

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Обозначение участка Длина участка в метрах Количество приборов а участке, шт.
1-2 1,8 1
2-3 3,0 1
3-4 2,8 2
4-5 2,9 2

Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.

Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.

Вычисление местных сопротивлений

Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:

  • шероховатость внутренней поверхности трубы;
  • наличие мест расширения или сужения внутреннего диаметра трубопровода;
  • повороты;
  • протяженность;
  • наличие тройников, шаровых кранов, приборов балансировки и их количество.

Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).

Читайте также:
Отопление теплицы – водяная, газовая, воздушная система отопления

Исходные данные для расчета:

  • длина расчетного участка – l, м;
  • диаметр трубы – d, мм;
  • заданная скорость теплоносителя – u, мм;
  • характеристики регулирующей арматуры, предоставляемые производителем;
  • коэффициент трения (зависит от материала трубы), λ;
  • потери на трение — ∆Pl, Па;
  • плотность теплоносителя (расчетная) – ρ = 971,8 кг/м 3 ;
  • толщина стенки трубы – dн х δ, мм;
  • эквивалентная шероховатость трубы – kэ, мм.

Гидравлическое сопротивление — ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.

Символ ξ в формуле означает коэффициент местного сопротивления.

Если в доме стоит печка, отопить она сможет лишь небольшое помещение. Установка батарей отопления в частном доме большой площади обязательна, так как в противном случае отдаленные от печи комнаты отапливаться не будут.

Основные характеристики газового котла Buderus представлены в этом обзоре.

О том, как запустить газовый котел, расскажем в этой статье.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S — произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Определение потерь

Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:

  • первичного контура — ∆Plk;
  • местных систем — ∆Plм;
  • генератора тепла — ∆Pтг;
  • теплообменника ∆Pто.

Гидравлический расчет системы отопления — пример расчета

В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

Исходные данные для расчета:

  • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
  • параметры системы – tг = 75 0 С, tо = 60 0 С;
  • расход теплоносителя (расчетный) – Vсо = 7,6 м 3 /ч;
  • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
  • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 80 0 С;
  • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
  • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:

0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.

Варианты двухтрубной отопительной системы

Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.

Самодельная печь хорошо подойдет для обогрева дачного домика или подсобного помещения. Печка из газового баллона своими руками — смотрите инструкцию по изготовлению.

Как собрать пресс для топливных брикетов своими руками, вы узнаете в этой статье.

Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

Видео на тему

Особенности гидравлического расчета системы радиаторного отопления

Комфорт в загородном доме во многом зависит от надёжной работы системы отопления. Теплоотдача при радиаторном отоплении, системе «тёплый пол» и «тёплый плинтус» обеспечивается за счёт движения по трубам теплоносителя. Поэтому правильному подбору циркуляционных насосов, запорно-регулирующей арматуры, фитингов и определению оптимального диаметра трубопроводов предшествует гидравлический расчёт системы отопления.

Данный расчёт требует профессиональных знаний, поэтому мы в данной части учебного курса «Системы отопления: выбор, монтаж», с помощью специалиста компании REHAU, расскажем:

  • О каких нюансах следует знать перед выполнением гидравлического расчёта.
  • Чем отличаются системы отопления с тупиковым и попутным движением теплоносителя.
  • В чём состоят цели гидравлического расчёта.
  • Как материал труб и способ их соединения оказывает влияние на гидравлический расчёт.
  • Каким образом специальное программное обеспечивание позволяет ускорить и упростить процесс гидравлического расчета.

Нюансы, о которых надо знать перед выполнением гидравлического расчёта

В современной системе отопления протекают сложные гидравлические процессы с динамически меняющимися характеристиками. Поэтому на гидравлический расчёт оказывает влияние множество нюансов: начиная от типа системы отопления, вида отопительных приборов и способа их присоединения, режима регулирования и заканчивая материалом комплектующих.

Важно: Трубопроводная отопительная система загородного дома — это сложная разветвлённая сеть. Гидравлический расчет определяет её правильную работу так, чтобы ко всем отопительным приборам поступало необходимое количество теплоносителя. Правильно рассчитать и спроектировать систему отопления может только квалифицированный специалист, имеющий профильное образование по данной дисциплине.

Системы радиаторной и водопроводной разводок — это разветвленные трубопроводные сети. В трубопроводах давление теряется на трение о стенки труб и на местные сопротивления в фасонных частях при разделении или слиянии потоков, на внезапные расширения или сужения «живого» сечения. Для того чтобы теплоноситель или вода поступали к отопительным приборам или точкам водоразбора в необходимом количестве, трубопроводная сеть должна быть правильно рассчитана.

Вне зависимости от того, какая система отопления смонтирована в доме, например, радиаторная разводка или тёплый пол, принцип гидравлического расчёта одинаков для всех, но каждая система требует индивидуального подхода.

Читайте также:
Отопление частного дома: Обзор систем отопления для частного дома

Например, система отопления может быть заправлена водой, этилен- или пропиленгликолем, а это повлияет на гидравлические параметры системы.

У этиленгликоля или пропиленгликоля большая вязкость и меньшая текучесть, чем у воды, а значит, и сопротивление при движении по трубопроводу будет больше. Кроме этого, теплоёмкость этиленгликоля меньше, чем у воды, и составляет 3,45 кДж/(кг▪К), а у воды 4.19 кДж/(кг*К). В связи с этим расход, при том же перепаде температур, должен быть на 20 с лишним процентов выше.

Важно: вид теплоносителя, который будет циркулировать в системе отопления, определяется заранее. Соответственно: проектировщик при гидравлическом расчёте системы отопления должен учесть его характеристики.

Выбор одно- или двухтрубной системы отопления также влияет на методику гидравлического расчёта.

Это связано с тем, что в однотрубной системе вода последовательно проходит через все радиаторы, и расход через все приборы в расчетных условиях будет единым при различных небольших перепадах температур на каждом приборе. В двухтрубной системе вода через отдельные кольца поступает независимо в каждый радиатор. Поэтому в двухтрубной системе перепад температур на всех приборах будет одинаковым и большим, порядка 20 К, а вот расходы через каждый прибор будут существенно различаться.

При гидравлическом расчете выбирается самое нагруженное кольцо. Оно является расчётным. Все остальные кольца увязываются с ним так, чтобы потери в параллельных кольцах были одинаковыми, с соответствующими им участками главного кольца.

При выполнении гидравлического расчета обычно вводятся следующие допущения:

  1. Скорость воды в подводках не более 0,5 м/с, в магистралях в коридорах 0,6-0,8 м/с, в магистралях в подвалах 1,0-1,5 м/с.
  2. Удельные потери давления на трение в трубопроводах – не более 140 Па/м.

Системы отопления с тупиковым и попутным движением теплоносителя

Отметим, что в системах радиаторной разводки, при едином принципе гидравлического расчёта, существуют разные подходы, т.к. системы подразделяются на тупиковые и попутные.

При тупиковой схеме теплоноситель движется по трубам «подачи» и «обратки» в противоположные стороны. И, соответственно, в попутной схеме теплоноситель движется по трубам в одном направлении.

В тупиковых системах расчет ведётся через дальние — наиболее нагруженные участки. Для этого выбирается главное циркуляционное кольцо. Это самое неблагоприятное направление для воды, по которому прежде всего подбираются диаметры отопительных труб. Все остальные второстепенные кольца, которые возникают в этой системе, должны увязываться с главным. В попутной системе расчёт ведётся через средний, наиболее нагруженный, стояк.

В системах водопровода соблюдается аналогичный принцип. Система рассчитывается через самый удалённый и самый нагруженный стояк. Но есть особенность – в расчёте расходов.

Важно: если в радиаторной разводке расход зависит от количества тепла и перепадов температур, то в водопроводе расход зависит от норм водопотребления, а также от типа установленной водоразборной арматуры.

Цели гидравлического расчета

Цели гидравлического расчета заключаются в следующем:

  1. Подобрать оптимальные диаметры трубопроводов.
  2. Увязать давления в отдельных ветвях сети.
  3. Выбрать циркуляционный насос для системы отопления.

Раскроем подробнее каждый из этих пунктов.

1. Подбор диаметров трубопроводов

Чем меньше диаметр трубопровода, тем больше сопротивление оказывается потоку теплоносителя из-за трения о стенки трубопровода и местных сопротивлений на поворотах и ответвлениях. Поэтому для малых расходов, как правило, берутся малые диаметры трубопроводов, для больших расходов, соответственно, большие диаметры, за счёт чего можно ограниченно отрегулировать систему.

Если система разветвлённая – есть короткая и длинная ветка, то на длинной ветке идёт большой расход, а на короткой – меньший. В этом случае короткая ветка должна выполняться из труб меньших диаметров, а длинная ветка должна выполняться из труб большего диаметра.

И, по мере уменьшения расхода, от начала к концу ветки диаметры труб должны уменьшаться так, чтобы скорость теплоносителя была примерно одинакова.

2. Увязка давлений в отдельных ветвях сети

Увязка может производиться подбором соответствующих диаметров труб или, если возможности этого способа исчерпаны, то за счёт установки регуляторов расхода давления или регулировочных вентилей на отдельных ветвях.

Частично мы, как это описано выше, можем увязать давление с помощью подбора диаметров трубопроводов. Но не всегда это удаётся сделать. Например, если берём самый маленький диаметр трубопровода на короткой ветке, а сопротивление в нём все равно недостаточно большое, тогда весь поток воды будет идти через короткую ветку, не заходя в длинную. В этом случае требуется дополнительная регулировочная арматура.

Регулировочная арматура может быть разной.

Бюджетный вариант — ставим регулировочный вентиль — т.е. вентиль с плавной регулировкой, который имеет градацию в настройке. Каждый вентиль имеет свою характеристику. При гидравлическом расчёте проектировщик смотрит, какое давление необходимо погасить, и определяется так называемая невязка давлений между длинной и короткой ветками. Тогда по характеристике вентиля проектировщик определяет, на сколько оборотов этот вентиль, от полностью закрытого положения, надо будет открыть. Например, на 1, на 1.5 или на 2 оборота. В зависимости от степени открытия вентиля будет добавляться разное сопротивление.

Более дорогой и сложный вариант регулировочной арматуры — т.н. регуляторы давления и регуляторы расхода. Это устройства, на которых мы задаём необходимый расход или необходимый перепад давлений, т.е. падение давлений на этой ветке. В этом случае устройства сами контролируют работу системы и, если расход не соответствует требуемому уровню, то они открывают сечение, и расход увеличивается. Если расход слишком большой, то сечение перекрывается. Аналогично происходит и с давлением.

Читайте также:
Автономная газификация частного дома под ключ. Полный обзор

Если все потребители после ночного понижения теплоотдачи одновременно открыли утром свои отопительные приборы, то теплоноситель попытается, в первую очередь, поступать в ближние к тепловому пункту приборы, а до дальних дойдет спустя часы. Тогда сработает регулятор давления, прикрывая ближайшие ветки и, тем самым, обеспечит равномерное поступление теплоносителя во все ветки.

3. Подбор циркуляционного насоса по давлению (напору) и по расходу (подаче)

Расчетные потери давления в главном циркуляционном кольце (с небольшим запасом) определят напор для циркуляционного насоса. А расчетный расход насоса – это суммарный расход теплоносителя по всем ветвям системы. Насос подбирается по напору и по расходу.

Если в системе стоит несколько циркуляционных насосов, то в случае их последовательного монтажа у них суммируется напор, а расход будет общим. Если насосы работают параллельно, то у них суммируется расход, а напор будет одинаковым.

Важно: Определив в ходе гидравлического расчёта потери давления в системе, можно выбрать циркуляционный насос, который оптимально будет соответствовать параметрам системы, обеспечивая оптимум затрат – капитальных (стоимость насоса) и эксплуатационных (стоимость электроэнергии на циркуляцию).

Как выбор комплектующих для системы отопления влияет на гидравлический расчёт

Материал, из которого изготовлены трубы системы отопления, фитинги, а также техника их соединения, оказывает существенное влияние на гидравлический расчет.

Трубы, имеющие гладкую внутреннюю поверхность, уменьшают потери на трение при движении теплоносителя. Это даёт нам преимущества – берём трубопроводы меньшего диаметра и экономим на материале. Также уменьшаются затраты электроэнергии, необходимые для работы циркуляционного насоса. Можно взять насос меньшей мощности, т.к. за счёт меньшего сопротивления в трубопроводах требуется меньший напор.

В местах соединений «фитинг-труба», в зависимости от способа их монтажа, могут быть большие потери, или, наоборот, потери на сопротивление потоку при движении теплоносителя сведены к минимуму.

Например, если используется техника соединения методом «надвижной гильзы», т.е. развальцовывается конец трубопровода, и внутрь вставляется фитинг, то за счёт этого не происходит заужения живого сечения. Соответственно: уменьшается местное сопротивление, и уменьшаются энергетические затраты на циркуляцию воды.

Подведение итогов

Выше уже говорилось, что гидравлический расчёт системы отопления — это сложная задача, требующая профессиональных знаний. Если предстоит спроектировать сильно разветвлённую систему отопления (большой дом), то расчёт вручную отнимает много сил и времени. Для упрощения данной задачи разработаны специальные компьютерные программы.

С помощью этих программ можно сделать гидравлический расчёт, определить регулировочные характеристики запорно-регулировочной арматуры и автоматически составить заказную спецификацию. В зависимости от типа программ, расчёт осуществляется в среде AutoCAD или в собственном графическом редакторе.

Добавим, что сейчас при проектировании промышленных и гражданских объектов наметилась тенденция к использованию BIM технологий (building information modeling). В этом случае все проектировщики работают в едином информационном пространстве. Для этого создаётся «облачная» модель здания. Благодаря этому любые нестыковки выявляются ещё на стадии проектировании, и своевременно вносятся необходимые изменения в проект. Это позволяет точно спланировать все строительные работы, избежать затягивания сроков сдачи объекта и тем самым сократить смету.

Как сделать гидравлический расчет системы отопления

Нужно отметить, что инженерные расчеты систем водоснабжения и отопления никак нельзя назвать простыми, но без них обойтись невозможно, только очень опытный специалист-практик может нарисовать систему отопления «на глазок» и безошибочно подобрать диаметры труб. Это если схема достаточно проста и предназначена для обогрева небольшого дома высотой 1 или 2 этажа. А когда речь идет о сложных двухтрубных системах, то рассчитывать их все равно придется. Эта статья для тех, кто решился самостоятельно выполнить расчет системы отопления частного дома. Мы изложим методику несколько упрощенно, но так, чтобы получить максимально точные результаты.

Цель и ход выполнения расчета

Конечно, за результатами можно обратиться к специалистам либо воспользоваться онлайн-калькулятором, коих хватает на всяких интернет-ресурсах. Но первое стоит денег, а второе может дать некорректный результат и его все равно надо проверять.

Так что лучше набраться терпения и взяться за дело самому. Надо понимать, что практическая цель гидравлического расчета – это подбор проходных сечений труб и определение перепада давления во всей системе, чтобы верно выбрать циркуляционный насос.

Примечание. Давая рекомендации по выполнению вычислений подразумевается, что теплотехнические расчеты уже сделаны, и радиаторы подобраны по мощности. Если же нет, то придется идти старым путем: принимать тепловую мощность каждого радиатора по квадратуре помещения, но тогда точность расчета снизится.

Общая схема расчета выглядит таким образом:

  • подготовка аксонометрической схемы: когда уже выполнен расчет отопительных приборов, то известна их мощность, ее надо нанести на чертеж возле каждого радиатора;
  • определение расхода теплоносителя и диаметров трубопроводов;
  • расчет сопротивления системы и подбор циркуляционного насоса;
  • расчет объема воды в системе и вместительности расширительного бака.

Любой гидравлический расчет системы отопления начинается со схемы, нарисованной в 3 измерениях для наглядности (аксонометрия). На нее наносятся все известные данные, в качестве примера возьмем участок системы, изображенный на чертеже:

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.
Читайте также:
Схема отопления с естественной циркуляцией частного дома

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

Имеем: 86 / 3600 х 0,983 = 0.024 л/сек. Потребность в переводе единиц объясняется необходимостью использования специальных готовых таблиц для определения диаметра трубы в частном доме. Они есть в свободном доступе и называются «Таблицы Шевелева для гидравлических расчетов». Скачать их можно, перейдя по ссылке: http://dwg.ru/dnl/11875

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Примечание. В левом столбце под диаметром сразу же указывается скорость движения воды. Для систем отопления ее значение должно лежать в пределах 0.2—0.5 м/сек.

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Важно. Для систем отопления с естественной циркуляцией скорость движения теплоносителя должна составлять 0.1—0.2 м/сек.

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Расчет циркуляционного насоса

Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:

P = Rl + Z, где:

  • Р – потери давления в сети трубопроводов, Па;
  • R – удельное сопротивление трению, Па/м;
  • l – длина трубы на одном участке, м;
  • Z – потеря давления в местных сопротивлениях, Па.

Примечание. Двух – и однотрубная система отопления рассчитываются одинаково, по длине трубы во всех ветвях, а в первом случае — прямой и обратной магистрали.

Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:

Rl = 26.6 / 1000 х 5 = 0.13 Бар.

Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях. Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать. Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.

Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.

Расчет расширительного бака

Чтобы произвести расчет расширительного бака для закрытой системы отопления, необходимо выяснить, насколько увеличивается объем жидкости при ее нагреве от комнатной температуры +20 ºС до рабочей, находящейся в пределах 50—80 ºС. Эта задача тоже не из простых, но ее можно решить другим способом.

Вполне корректным считается принимать объем бака в размере десятой части от всего количества воды в системе, включая радиаторы и водяную рубашку котла. Поэтому снова открываем паспорта оборудования и находим в них вместительность 1 секции батареи и котлового бака.

Далее, расчет объема теплоносителя в системе отопления выполняется по простой схеме: вычисляется площадь поперечного сечения трубы каждого диаметра и умножается на ее длину. Полученные значения суммируются, к ним прибавляются паспортные данные, а потом от результата берется десятая часть. То есть, если во всей системе 150 л воды, то вместительность расширительного бака должна составлять 15 л.

Заключение

Многие, прочитав данную статью, могут отказаться от намерения считать гидравлику самостоятельно ввиду явной сложности процесса. Рекомендация для них – обратиться к специалисту-практику. Те же, кто проявил желание и уже сделал расчет тепловой мощности отопления на здание, наверняка справятся и с этой задачей. Но готовую схему с результатами все равно стоит показать опытному монтажнику для проверки.

Читайте также:
Отопление дома инфракрасной системой обогрева дома

Гидравлический расчёт системы отопления

Сегодня разберём, как произвести гидравлический расчёт системы отопления. Ведь по сей день распространяется практика проектирования отопительных систем по наитию. Это в корне неверный подход: без предварительного расчёта мы задираем планку материалоёмкости, провоцируем нештатные режимы работы и лишаемся возможности добиться максимальной эффективности.

Цели и задачи гидравлического расчёта

С инженерной точки зрения жидкостная система отопления представляется достаточно сложным комплексом, включающим устройства генерации тепла, его транспортировки и выделения в обогреваемых помещениях. Идеальным режимом работы гидравлической системы отопления считается такой, при котором теплоноситель поглощает максимум тепла от источника и передаёт его комнатной атмосфере без потерь в процессе перемещения. Конечно, такая задача видится совершенно недостижимой, однако более вдумчивый подход позволяет предсказать поведение системы в различных условиях и максимально приблизиться к эталонным показателям. Это и есть главная цель проектирования систем отопления, важнейшей частью которого по праву считается гидравлический расчёт.

Практические цели гидравлического расчёта таковы:

    Понять, с какой скоростью и в каком объёме осуществляется перемещение теплоносителя в каждом узле системы.

Можно сказать больше: без хотя бы базовых расчётов невозможно добиться приемлемой стабильности работы и долговечного использования оборудования. Моделирование действия гидравлической системы, по сути, является базисом, на котором строится вся дальнейшая проектная разработка.

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.

Двухтрубная тупиковая система отопления

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.

Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.

Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.

Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Определение расхода и скорости движения теплоносителя

Наиболее известная методика расчёта гидравлических систем основывается на данных теплотехнического расчёта, которым определяется норма восполнения теплопотерь в каждом помещении и, соответственно, тепловая мощность радиаторов, в них установленных. На первый взгляд всё просто: мы имеем общее значение тепловой мощности и затем дозируем поступление теплоносителя к каждому нагревательному прибору. Для большего удобства предварительно строится аксонометрический эскиз гидравлической системы, который аннотируется требуемыми показателями мощности радиаторов или петель водяного тёплого пола.

Аксонометрическая схема системы отопления

Переход от теплотехнического расчёта к гидравлическому осуществляется путём введения понятия массового потока, то есть некой массы теплоносителя, подводимого к каждому участку отопительного контура. Массовый поток есть отношение требуемой тепловой мощности к произведению удельной теплоёмкости теплоносителя на разность температур в подающем и возвратном трубопроводе. Таким образом, на эскизе отопительной системы отмечают ключевые точки, для которых указывается номинальный массовый поток. Для удобства параллельно определяется и объёмный поток с учётом плотности используемого теплоносителя.

  • G — расход теплоносителя, кг/с
  • Q — необходимая тепловая мощность, Вт
  • c — удельная теплоёмкость теплоносителя, для воды принимаемая 4200 Дж/(кг·°С)
  • ΔT = (t2 – t1) — разность температур между подачей и обраткой, °С

Логика здесь проста: чтобы доставить необходимое количество тепла к радиатору, нужно сперва определить объём или массу теплоносителя с заданной теплоёмкостью, проходящего через трубопровод за единицу времени. Для этого требуется определить скорость движения теплоносителя в контуре, которая равна отношению объёмного потока к площади сечения внутреннего прохода трубы. Если расчёт скорости ведётся относительно массового потока, в знаменатель нужно добавить значение плотности теплоносителя:

V = G / (ρ · f)

  • V — скорость движения теплоносителя, м/с
  • G — расход теплоносителя, кг/с
  • ρ — плотность теплоносителя, для воды можно принять 1000 кг/м 3
  • f — площадь сечения трубы, находится по формуле π­·r 2 , где r — внутренний диаметр трубы, делённый на два

Данные о расходе и скорости необходимы для определения условного прохода труб развязки, а также подачи и напора циркуляционных насосов. Устройства принудительной циркуляции должны создавать избыточное давление, позволяющее преодолеть гидродинамическое сопротивление труб и запорно-регулирующей арматуры. Наибольшую сложность представляет гидравлический расчёт систем с естественной (гравитационной) циркуляцией, для которых требуемое избыточное давление рассчитывается по скорости и степени объёмного расширения нагреваемого теплоносителя.

Читайте также:
Почему не греет полотенцесушитель и что нужно делать?

Потери напора и давления

Расчёт параметров по описанным выше соотношениям был бы достаточен для идеальных моделей. В реальной жизни и объёмный поток, и скорость теплоносителя всегда будут отличаться от расчётных в разных точках системы. Причина тому — гидродинамическое сопротивление движению теплоносителя. Оно обусловлено рядом факторов:

  1. Силами трения теплоносителя о стенки труб.
  2. Местными сопротивлениями протоку, образуемыми фитингами, кранами, фильтрами, термостатирующими клапанами и прочей арматурой.
  3. Наличием разветвлений присоединительного и ответвительного типов.
  4. Турбулентными завихрениями на поворотах, сужениях, расширениях и т. д.

Задача нахождения падения давления и скорости на разных участках системы по праву считается наиболее сложной, она лежит в области расчётов гидродинамических сред. Так, силы трения жидкости о внутренние поверхности трубы описываются логарифмической функцией, учитывающей шероховатость материала и кинематическую вязкость. С расчётами турбулентных завихрений всё ещё сложнее: малейшее изменение профиля и формы канала делает каждую отдельно взятую ситуацию уникальной. Для облегчения расчётов вводится два опорных коэффициента:

  1. Кvs — характеризующий пропускную способность труб, радиаторов, разделителей и прочих участков, приближенных к линейным.
  2. Кмс — определяющий местные сопротивления в различной арматуре.

Эти коэффициенты указываются производителями труб, клапанов, кранов, фильтров для каждого отдельно взятого изделия. Пользоваться коэффициентами достаточно легко: для определения потери напора Кмс умножают на отношение квадрата скорости движения теплоносителя к двойному значению ускорения свободного падения:

Δhмс = Кмс (V 2 /2g) или Δpмс = Кмс (ρV 2 /2)

  • Δhмс — потери напора на местных сопротивлениях, м
  • Δpмс — потери напора на местных сопротивлениях, Па
  • Кмс — коэффициент местного сопротивления
  • g — ускорение свободного падения, 9,8 м/с 2
  • ρ — плотность теплоносителя, для воды 1000 кг/м 3

Потеря напора на линейных участках представляет собой отношение пропускной способности канала к известному коэффициенту пропускной способности, причём результат деления нужно возвести во вторую степень:

Р = (G/Kvs) 2

  • Р — потеря напора, бар
  • G — фактический расход теплоносителя, м 3 /час
  • Kvs — пропускная способность, м 3 /час

Предварительная балансировка системы

Важнейшей финальной целью гидравлического расчёта системы отопления является вычисление таких значений пропускной способности, при которых в каждую часть каждого контура отопления поступает строго дозированное количество теплоносителя с определённой температурой, чем обеспечивается нормированное выделение тепла на нагревательных приборах. Эта задача лишь на первый взгляд кажется сложной. В действительности балансировка выполняется за счёт регулировочных клапанов, ограничивающих проток. Для каждой модели клапана указывается как коэффициент Kvs для полностью открытого состояния, так и график изменения коэффициента Kv для разной степени открытия регулировочного штока. Изменяя пропускную способность клапанов, которые, как правило, устанавливаются в точках подключения нагревательных приборов, можно добиться искомого распределения теплоносителя, а значит, и количества переносимой им теплоты.

Есть, однако, небольшой нюанс: при изменении пропускной способности в одной точке системы меняется не только фактический расход на рассматриваемом участке. Из-за снижения или увеличения протока в некой степени меняется баланс во всех остальных контурах. Если взять для примера два радиатора с разной тепловой мощностью, соединённых параллельно при встречном движении теплоносителя, то при увеличении пропускной способности прибора, стоящего в цепи первым, второй получит меньше теплоносителя из-за увеличения разницы в гидродинамическом сопротивлении. Напротив, при снижении протока за счёт регулировочного клапана все остальные радиаторы, стоящие по цепочке дальше, получат больший объём теплоносителя автоматически и будут нуждаться в дополнительной калибровке. Для каждого типа разводки действуют свои принципы балансировки.

Программные комплексы для расчётов

Очевидно, что выполнение расчётов вручную оправдано только для малых систем отопления, имеющих максимум один или два контура с 4–5 радиаторами в каждом. Более сложные системы отопления тепловой мощностью свыше 30 кВт требуют комплексного подхода при расчёте гидравлики, что расширяет спектр используемых инструментов далеко за пределы карандаша и листа бумаги.

Danfoss C.O. 3.8

На сегодняшний день существует достаточно большое количество программного обеспечения, предоставляемого крупнейшими производителями отопительной техники, такими как Valtec, Danfoss или Herz. В подобных программных комплексах для расчёта поведения гидравлики используется та же методология, которая была описана в нашем обзоре. Сначала в визуальном редакторе моделируется точная копия проектируемой системы отопления, для которой указываются данные о тепловой мощности, типе теплоносителя, протяжённости и высоте перепадов трубопроводов, используемой арматуре, радиаторах и змеевиках тёплого пола. В библиотеке программы имеется широкий спектр гидротехнических устройств и арматуры, для каждого изделия производитель заблаговременно определил рабочие параметры и базовые коэффициенты. При желании можно добавить и сторонние образцы устройств, если для них известен требуемый перечень характеристик.

В финале работы программа даёт возможность определить подходящий условный проход труб, подобрать достаточную подачу и напор циркуляционных насосов. Расчёт завершается балансировкой системы, при этом в ходе симуляции работы гидравлики происходит учёт зависимостей и влияния изменения пропускной способности одного узла системы на все остальные. Практика показывает, что освоение и использование даже платных программных продуктов оказывается дешевле, чем если бы выполнение расчётов поручалось подрядным специалистам.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: